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1. Introduction

The discovery of anisotropies in the cosmic microwave bemkgd (CMB) by the
COBE satellitein 1992 (Smoet al, 1992 ; Bennetet al, 1996 ) has stimulated an
enormous activity in this field which has culminated recemtith the high preci-
sion data of the BOOMERanG, MAXIMA-I and DASI experiment® @ernardis
etal, 2000 ; Hanangt al,, 2000 ; Netterfielet al, 2001 ; Leest al, 2001 ; Halver-
sonet al, 2001 ). The CMB is developing into the most important obatonal
tool to study the early Universe. Recently, CMB data has hessd mainly to
determine cosmological parameters for a fixed model ofdHitictuations, namely
scale invariant adiabatic perturbations. In my talk | oslithis procedure and
present some results. | will also mention the problem of deggcies and indi-
cate how these are removed by measurements of the CMB milarizor other
cosmological data. Finally, I include a critical discussad the model assumptions
which enter the parameter estimations and will show in amgka what happens
it these assumptions are relaxed.

In the next section we discuss in some detail the physicssoEMB. Then we
investigate how CMB anisotropies depend on cosmologicarmaters. We also
discuss degeneracies. In Section 4 we investigate the naegeindence of the
'parameter estimation’ procedure. We end with some cormhss

2. Thephysicsof the CMB

Before discussing the possibilities and problems of patamestimation using
CMB anisotropy data | want to describe the physics of thesotopies. As CMB
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anisotropies are small, they can be treated nearly conpletthin linear cosmo-
logical perturbation theory. Effects due to non-lineaistdwing of matter, like.g.
the Rees-Sciama effect, the Sunyaev-Zel'dovich effectiosihg are relevant only
on very small angular scale&(1000) and are not discussed here.

Since the CMB anisotropies are a function on a sphere, theypeaxpanded
in spherical harmonics,
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whereAT =T — Tp andTp is the mean temperature on the sky. The CMB power
spectrunt, is the ensemble average of the coefficiemts
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If the fluctuations are statistically isotropic, t8gs are independent ehand if
they are Gaussian all the statistical information is cor@diin the power spectrum.
The relation between the power spectrum and the two poin¢ledion function is
given by
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In a real experiment, unfortunately, we have only one usi@nd one sky at our
disposition and can therefore not measure an ensemblegavdrageneral, one
assumes statistical isotropy and sets

1
m

In the ideal case of full sky coverage, this yields an avemyg#’ + 1 numbers
(note thataym = a;_,). If the temperature fluctuations are Gaussian, the obderve
mean deviates from the ensemble average by about
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This fundamental limitation of the precision of a measuretwehich is important
especially for low multipoles is called cosmic variancephactice one never has
complete sky coverage and the cosmic variance of a giverriexpet is in general
substantially larger than the value given in Eq. (3).

Within linear perturbation theory one can split perturbasi into scalar, vector
and tensor contributions according to their transfornmapooperties under rota-
tion. The different components do not mix. Initial vectortpebations rapidly
decay and are thus usually neglected. Scalar and tensarlpaions contribute
to CMB anisotropies. After recombination of electrons amdt@ns into neutral
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hydrogen, the universe becomes transparent for CMB phatwhthey move along
geodesics of the perturbed Friedman geometry. Integrétimgerturbed geodesic
equation, one obtains the following expressions for theptature anisotropies of
scalar §) and tensort{) perturbations
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Heren denotes conformal tima)o indicates today whilégec is the time of de-
coupling @gec~ 1100) andx(n) is the comoving unperturbed photon position at
timen, x(n) = xo— N(n —no) for a flat universexgec= X(Ndeg). The above ex-
pression for the temperature anisotropy is written in gaagariant form (Durrer,
1990). The variabl®, represents the photon energy density fluctuatigris,the
baryon velocity field andP andW are the Bardeen potentials, the scalar degrees
of freedom for metric perturbations of a Friedman univeBardeen, 1980 ). For
perturbations coming from ideal fluids or non-relativistiatter = — @ is simply

the Newtonian gravitational potential.

2.1. THE SACHS WOLFE EFFECT

On large angular scales, the dominant contributions to thweep spectrum for
scalar perturbations come from the first term and the Bargegntials. The in-
tegral is often called the 'integrated Sachs Wolfe effel@W) while the first and
third terms of Eq. 4 are the 'ordinary Sachs Wolfe effect’ {@SIn the general
case this splitis purely formal, butin a matter dominateidense with critical den-
sity, Qm =1, the Bardeen potentials are time independent and the I1$W¥ilootion
vanishes.

For adiabatic fluctuations in a matter dominated univensehas}r D, = %Dm =
%HJ. Together withd = —W this yields the original formula of Sachs and
Wolfe (1967):

SW
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Tensor perturbations (gravity waves) only contribute egdascales, where met-
ric perturbations are most relevant. Note the similarityheftensor contribution to
the ISW term which has the same origin.
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2.2. ACOUSTIC OSCILLATIONS AND THEDOPPLER TERM

Prior to recombination, photons, electrons and baryonsh fartightly coupled
fluid. On sub-horizon scales this fluid performs acoustidllasions driven by the
gravitational potential. The wave equation in Fourier gpac

D+3(c2—w)=D+(1+wWk?V = 0 (6)
’ a 2 Cs 2
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wherew= p/p andcZ = p/pis the adiabatic sound speed. Since before recombina-
tion, the baryon photon fluid is dominated by radiation weehae~ c2 ~ 1/3.The
system (6,7), which is a pure consequence of energy momeeduaservation for

the baryon photon fluid, can be combined to a second order agation forD.

On very large, super-horizon scalég, < 1 the oscillatory term can be neglected
andD remains constant. Ondez1 D begins to oscillate like an acoustic wave.
For pure radiationgZ = w = 1/3 the damping term vanishes and the amplitude
of the oscillations remains constant. At late times thei@ sight damping of the
oscillations.

If adiabatic perturbations have been created during ay gdtationary epoch,
the waves are in a maximum as longkas< 1 and perturbations with a given
wavenumber all start oscillating in phase. At the momentobmbination, when
the photons become free and the acoustic oscillations gtemerturbations of
a given wave length thus have all the same phase. As each g&en length is
projected to a fixed angular scale on the sky, this leads t@eacteristic series of
peaks and troughs in the CMB power spectrum. The first twodemtq. (4) are
responsible for these acoustic peaks.

In Fig. 1 we show the density and the velocity terms as wellhasr tsum.
The density term is often called the 'acoustic term’ while trelocity term is
the 'Doppler term’. It is clearly wrong to call the peaks iret€MB anisotropy
spectrum 'Doppler peaks’ as the Doppler term actually iselm a minimum at
the position of the peaks! We therefore call them acoustdkpe

2.3. SLK DAMPING

So far we have neglected that the process of recombinatkas t& finite amount
of time and the ’surface of last scattering’ has a finite thess. In reality the
transition from perfect fluid coupling with a very short mefiee path to free
photons with mean free path larger than the size of the horiakes a certain
time during which photons can diffuse out of over—densitis under—densities.
This diffusion damping or Silk damping (Silk, 1968 ) expotiatly reduces CMB
anisotropies on small scales correspondingx800. The precise damping scale
depends on the amount of baryons in the universe.
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Figure 1. The contribution from the photon density fluctuatiols term, dashed line), from the
Doppler term ¥ - n, dotted line) and their sum (solid line) are shown. The peddarly follow the
acoustic contribution while the Doppler term dominatesia first few minima. Silk damping is not
included here.

In addition to Silk damping, the finite thickness of the retdmation shell im-
plies that not all the photons in the CMB have been emitteckattéy the same
moment and therefore we do not see all the fluctuations pigdis phase. This
'smearing out’ also leads to damping of CMB anisotropies boua the same
angular scale as Silk damping.

To calculate these phenomena with good precision one haspute the pro-
cess of recombination numerically and integrate the phBmizmann equation.
Since a couple of years there are public codes availabl¢akS&l Zaldarriaga,
1996 ; Lewiset al,, 2000 ) which compute the CMB anisotropies numerically with
a precision of about 1%.

2.4. FOLARIZATION

There is an additional phenomenon which we have not coresidew far: Non-
relativistic Thompson scattering, which is the dominarmtring process on the
surface of last scattering, is anisotropic. The scatteciogs section for photons
polarized in the scattering plane is (Jackson, 1975)

307
o//zacosze,

while the cross section for photons polarized normal to thaegis

307
o, =—.
7 8n
Here oy is the Thomson cross section afids the scattering angle. Therefore,
even if the incoming radiation is completely unpolarizefdits intensity is not
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perfectly isotropic (actually if it has a non-vanishing quapole) the outgoing radi-
ation will be linearly polarized. There exist two types ofgrization signals: the so
calledE-type polarization which has positive parity, aBdype polarization which

is parity odd. Scalar perturbations only prodie¢ype polarization, while tensor
perturbations, gravity waves, produce boihi, and B-type. Thomson scattering
never induces circular polarization.

A more detailed treatment of polarization of CMB anisotegpcan be found
e.g.in (Hu et al, 1998 ). A typical CMB anisotropy and polarization spectrum
as it is expected from inflationary models is shown in Fig. @aRzation of the
CMB has not yet been observed. The best existing limits aréherorder of a
fewx 1078, There is hope that the next Boomerang flight (planned forebdser
2001) or the MAP satellite (MAP, website ), which has beem&dned successfully
in June 2001, will detect polarization.
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Figure 2. The scalar (left) and tensor (right) CMB anisotropy and poégion spectra. Solid lines
show the temperature anisotropy, dashed liagsolarization and dotted lineB-polarization. The
thick lines represent a model with critical densi®g = 1 while the thin lines come from an open
model,Qo = 0.4. The normalization is arbitrary. Figure from tdtial. (1998).

3. Cosmological parameters and degener acy

In the simplest models for structure formation where adialidqaussian perturba-
tions are created during an inflationary phase, initialpbdtions are characterized
by two to four numbers: The amplitudes and spectral indidescalar and ten-
sor perturbations. Apart from these data characteriziegrttial conditions, the
resulting CMB anisotropies depend only on the cosmologieabmeters of the
underlying model, the matter density parametef, the cosmological constant,
Q,, curvature Qg = 1— Qo, the Hubble parameten,= Hy/(100kny's/Mpc), the
(reduced) baryon density, = Qph?, the reionization history, which is usually cast
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into an effective depth to the last scattering surfageand a few others. Therefore,
if the model of structure formation is a simple adiabaticdtifinary model, CMB
anisotropies can be used to determine cosmological pagasnethe presently
available data have been used for this goal in numerousgapdrslightly different
approaches have led to slightly different but, within thiksbnsiderable error bars,
consistent results (see e.g. (de Bernaedlial,, 2000 ; Prykeet al,, 2001 ; Langeet
al., 2001 ) and many others). As an example we show the resultsBéthardiset
al. (2001). In Fig. 3 the likelihood functions for the total dégparameterQo, the
scalar spectral indexy, and the baryon densitgyy,, as obtained from the COBE
DMR and the BOOMERANG data are shown (de Bernaedial., 2001 ). An adia-
batic model with purely scalar perturbations, witd®< h < 0.95 and with an age
larger than 10Gyr has been assumed for the determinatidredikielihoods. The
solid lines, which have been obtained by marginalizatioer @ll the parameters
not shown on the panel, are the most relevant. They irfgly- 1.02+ 0.06,ns =
1.02+ 0.1 andwy, = 0.024+ 0.005. The latter value coincides most remarkably
with the completely independent determination from nusjethesis result (Burles
et al, 2001 ) which yieldso, = 0.019+ 0.02.
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Figure 3.The likelihood curves derived from the BOOMERANG and COBE/R data sets for the
variablesQiot = Qg, Ns and Qph? = wy, for a model with purely scalar adiabatic fluctuations are
shown. The solid lines are marginalized over the other btgg@mwhile for the dashed lines (and the
open circles) the maximum likelihood point in the other aétes is chosen; from de Bernardis

al. (2001).

The most interesting outcome from these parameter estingis that if initial
perturbations are adiabatic, the Universe is very closeato Together with the
cluster data which indicate D< Qp, < 0.3 this suggests, completely independent
from the supernova results, that the density of the univisrdeminated by a non-
clustered form of dark energg,g.a cosmological constant wit, ~ 0.7.

However promising this procedure is, it is important to keemind that there
are certain exact degeneracies in the CMB data which carnetboved by CMB
data alone. Let us consider, for example, the param&grQn, Qp, h. Apart from
the ISW contribution which is relevant only at low valueshere cosmic variance
prohibits a precise determination, the CMB anisotropigsedd on these parame-
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ters only via the baryon density,, the matter densityoy, = Q,h? and the angular
diameter distance given lil4ec= X(No — Ndec), Where

sinly) if K>0
X(y) =< sinhly) if K<O0
y if K=0,

and

Zdec dz
Y="No—Ndec= V|Q /

m(142)3+Qr (142)2+ Qa2

The CMB anisotropies fo€z50 only depend on the following three combina-
tions of the four parameters consider®= dyed Qn = 0,Qm = 1)/dged Qn =
0,Qm), Wy andwm. In Fig. 4 lines of constarR are indicated in th&,—Q, plane.
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Figure 4. left: The lines of constantR are shown in theQa—Qm plane. The values
Qa,Qm for which the CMB anisotropy spectra are shown right are datid as black dots.
right: Three CMB anisotropy spectra with different valuest®{ and Qn, but fixedR are shown.
For /250 these spectra are clearly degenerate.The solid linegepts a flat model, while the dotted
line corresponds to a closed and the dashed line to an opeers@j from Trotta (2001).

The degeneracy is shown in Fig. 4 for a fixed valu&diut different points in
the Qp—Qm plane.

It is hence not possible to determine all four paramegsQa, Qp, h with
good accuracy from CMB data alone. There exist also othezrgciese.g.be-
tween the spectral index and the epoch of reionization oathplitude of tensor
perturbations.

We therefore consider it very important that CMB anisotroasurements are
complemented with other, more direct methods to measuraalogical parame-
ters so that this degeneracies are broken, and also to @btaimfortable degree
of redundancy.
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4. Modd dependence

Apart from the degeneracies mentioned in the previous@gdiie cosmological
parameters inferred form CMB anisotropies very stronglgesel on the model
assumptions. For example, in the case of isocurvatureadsi&adiabatic initial
perturbations, for a model with critical density the firsbastic peak is at ~ 350,
and a peak at ~ 210 indicates a closed universe. However, a closed model wit
isocurvature perturbations has acoustic peaks which arewer and more closely
spaced than those seen in the data. One such model, togéthtrendata, is shown

in Fig. 5. More details can be found in (Durretral, 2001a ; Durreet al, 2001b

).
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Figure 5. CMB anisotropies for three different models are shown, tioglewith the Boomerang
(solid, red) and Maxima (dashed, green) data. The shoredadtow a standard adiabatic inflationary
model, the long dashes show a closed isocurvature modéé thikisolid line shows another so called
'scaling seed’ model. Figure from Durret al. (2001b).

Very generic initial conditions for a universe with dark teat photons, baryons
and neutrinos are combinations of the adiabatic mode anddifarent isocurva-
ture modes which may or may not be correlated (Bu&tex., 2000 ). The initial
conditions are then specified by ax% positive definite matrix, the correlation
matrix of the different modes. It is interesting to compaeggmeter estimation
when allowing for this more generic initial conditions teetharameters obtained
from the data when allowing only for the adiabatic mode. Aexample we show
the confidence ranges in thew, plane for both cases in Fig. 6 (see Tro#ia
al. (2001)).
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Figure 6. The h,wy, confidence contours as obtained from the Boomerang datée(field et al,
2001 ), when allowing only for the adiabatic mode (left) arttew allowing for a general correlated
mixture of the adiabatic and isocurvature modes (righjufé from Trotteet al. (2001).

Clearly, once allowing for isocurvature modes one canntaialanymore rea-
sonable upper limits fasy, orh. What | find even more interesting here is that once
we requirewy, ~ 0.02+ 0.002 due to the nucleosynthesis constraintland0.65+
0.1 as favored by several independent estimates, we find tkaistiturvature
content in the initial conditions has to be relatively magds80%.

Nevertheless, | believe that the above makes it clear thisason of cosmic
parameters by CMB anisotropies is strongly model dependent

5. Conclusions

In this talk | have discussed the physics of CMB anisotropied what we can
learn from them. | have been relatively critical in my accboicosmic parameter
estimation from CMB anisotropies. This because in the vbgndant literature on
the subject, little emphasis is given on the model deperalehthis way of ‘'mea-
suring’ cosmological parameters. Clearly every measunéimephysics and even
more so in cosmology depends on the underlying theory. Budllysthe theory has
been tested before in many different setups, while in cosgypICMB anisotropies
are probably the best experimental data to test theoriesdemological initial
perturbationsi.e. to investigate cosmological perturbations at a very eadges
Therefore | find it to some extent a waste if one uses thesesdapdy to determine
a few numbers which can also be measured much more direaglyp kinematic
measurements with SNela’s).

On the other hand, it is intriguing how well the present CMBadzan be fit by
the simplest adiabatic model of scalar perturbations wesdnwlogical parameters
well within the range obtained by other measurements.
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