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1. Introduction

The discovery of anisotropies in the cosmic microwave background (CMB) by the
COBE satellite in 1992 (Smootet al., 1992 ; Bennettet al., 1996 ) has stimulated an
enormous activity in this field which has culminated recently with the high preci-
sion data of the BOOMERanG, MAXIMA-I and DASI experiments (de Bernardis
et al., 2000 ; Hananyet al., 2000 ; Netterfieldet al., 2001 ; Leeet al., 2001 ; Halver-
sonet al., 2001 ). The CMB is developing into the most important observational
tool to study the early Universe. Recently, CMB data has beenused mainly to
determine cosmological parameters for a fixed model of initial fluctuations, namely
scale invariant adiabatic perturbations. In my talk I outline this procedure and
present some results. I will also mention the problem of degeneracies and indi-
cate how these are removed by measurements of the CMB polarization or other
cosmological data. Finally, I include a critical discussion of the model assumptions
which enter the parameter estimations and will show in an example what happens
it these assumptions are relaxed.

In the next section we discuss in some detail the physics of the CMB. Then we
investigate how CMB anisotropies depend on cosmological parameters. We also
discuss degeneracies. In Section 4 we investigate the modeldependence of the
’parameter estimation’ procedure. We end with some conclusions.

2. The physics of the CMB

Before discussing the possibilities and problems of parameter estimation using
CMB anisotropy data I want to describe the physics of these anisotropies. As CMB
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anisotropies are small, they can be treated nearly completely within linear cosmo-
logical perturbation theory. Effects due to non-linear clustering of matter, likee.g.
the Rees-Sciama effect, the Sunyaev-Zel’dovich effect or lensing are relevant only
on very small angular scales (`�>1000) and are not discussed here.

Since the CMB anisotropies are a function on a sphere, they can be expanded
in spherical harmonics,

∆T
T0

(n) = ∞

∑̀=1

m=`
∑

m=�`a`mỲ m(n) ; (1)

where∆T = T�T0 andT0 is the mean temperature on the sky. The CMB power
spectrumC` is the ensemble average of the coefficientsa`m,

C` = hja`mj2i :
If the fluctuations are statistically isotropic, theC`’s are independent ofmand if

they are Gaussian all the statistical information is contained in the power spectrum.
The relation between the power spectrum and the two point correlation function is
given by�

∆T
T0

(n1)∆T
T0

(n2)�= 1
4π ∑̀(2`+1)C`P̀ (n1 �n2) : (2)

In a real experiment, unfortunately, we have only one universe and one sky at our
disposition and can therefore not measure an ensemble average. In general, one
assumes statistical isotropy and sets

C` 'Cobs` = 1
2`+1 ∑

m
ja`mj2 :

In the ideal case of full sky coverage, this yields an averageon 2̀ +1 numbers
(note thata`m = a�̀�m). If the temperature fluctuations are Gaussian, the observed
mean deviates from the ensemble average by aboutq(Cobs` �C`)2

C` 'r 2
2`+1

: (3)

This fundamental limitation of the precision of a measurement which is important
especially for low multipoles is called cosmic variance. Inpractice one never has
complete sky coverage and the cosmic variance of a given experiment is in general
substantially larger than the value given in Eq. (3).

Within linear perturbation theory one can split perturbations into scalar, vector
and tensor contributions according to their transformation properties under rota-
tion. The different components do not mix. Initial vector perturbations rapidly
decay and are thus usually neglected. Scalar and tensor perturbations contribute
to CMB anisotropies. After recombination of electrons and protons into neutral
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hydrogen, the universe becomes transparent for CMB photonsand they move along
geodesics of the perturbed Friedman geometry. Integratingthe perturbed geodesic
equation, one obtains the following expressions for the temperature anisotropies of
scalar (s) and tensor (t) perturbations�

∆T
T

�(s) (η0;x0;n) = 1
4

Dr(ηdec;xdec)+vi(ηdec;xdec)ni +(Φ�Ψ)(ηdec;xdec)�Z η0

ηdec

(Φ̇� Ψ̇)(η;x(η))dη ; (4)�
∆T
T

�(t) (η0;x0;n) = �Z η0

ηdec

ḣi j (η;x(η))nin jdη : (5)

Hereη denotes conformal time,η0 indicates today whileηdec is the time of de-
coupling (zdec� 1100) andx(η) is the comoving unperturbed photon position at
time η, x(η) = x0� n(η�η0) for a flat universe,xdec= x(ηdec). The above ex-
pression for the temperature anisotropy is written in gauge-invariant form (Durrer,
1990 ). The variableDr represents the photon energy density fluctuations,vi is the
baryon velocity field andΦ andΨ are the Bardeen potentials, the scalar degrees
of freedom for metric perturbations of a Friedman universe (Bardeen, 1980 ). For
perturbations coming from ideal fluids or non-relativisticmatterΨ =�Φ is simply
the Newtonian gravitational potential.

2.1. THE SACHS WOLFE EFFECT

On large angular scales, the dominant contributions to the power spectrum for
scalar perturbations come from the first term and the Bardeenpotentials. The in-
tegral is often called the ’integrated Sachs Wolfe effect’ (ISW) while the first and
third terms of Eq. 4 are the ’ordinary Sachs Wolfe effect’ (OSW). In the general
case this split is purely formal, but in a matter dominated universe with critical den-
sity,Ωm= 1, the Bardeen potentials are time independent and the ISW contribution
vanishes.

For adiabatic fluctuations in a matter dominated universe, one has1
4Dr = 1

3Dm=
5
3Ψ. Together withΦ =�Ψ this yields the original formula of Sachs and
Wolfe (1967):�

∆T
T

�SW =�1
3

Ψ :
Tensor perturbations (gravity waves) only contribute on large scales, where met-

ric perturbations are most relevant. Note the similarity ofthe tensor contribution to
the ISW term which has the same origin.
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2.2. ACOUSTIC OSCILLATIONS AND THEDOPPLER TERM

Prior to recombination, photons, electrons and baryons form a tightly coupled
fluid. On sub-horizon scales this fluid performs acoustic oscillations driven by the
gravitational potential. The wave equation in Fourier space is

Ḋ+3(c2
s�w) ȧ

a
D+(1+w)k2V = 0 (6)

V̇ + ȧ
a
(1�3c2

s)V� c2
s

w+1
D = Ψ�3c2

sΦ (7)

wherew= p=ρ andc2
s = ṗ=ρ̇ is the adiabatic sound speed. Since before recombina-

tion, the baryon photon fluid is dominated by radiation we have w' c2
s ' 1=3.The

system (6,7), which is a pure consequence of energy momentumconservation for
the baryon photon fluid, can be combined to a second order waveequation forD.
On very large, super-horizon scales,kη � 1 the oscillatory term can be neglected
andD remains constant. Oncekη�>1 D begins to oscillate like an acoustic wave.
For pure radiation,c2

s = w = 1=3 the damping term vanishes and the amplitude
of the oscillations remains constant. At late times there isa slight damping of the
oscillations.

If adiabatic perturbations have been created during an early inflationary epoch,
the waves are in a maximum as long askη � 1 and perturbations with a given
wavenumber all start oscillating in phase. At the moment of recombination, when
the photons become free and the acoustic oscillations stop,the perturbations of
a given wave length thus have all the same phase. As each givenwave length is
projected to a fixed angular scale on the sky, this leads to a characteristic series of
peaks and troughs in the CMB power spectrum. The first two terms in Eq. (4) are
responsible for these acoustic peaks.

In Fig. 1 we show the density and the velocity terms as well as their sum.
The density term is often called the ’acoustic term’ while the velocity term is
the ’Doppler term’. It is clearly wrong to call the peaks in the CMB anisotropy
spectrum ’Doppler peaks’ as the Doppler term actually is close to a minimum at
the position of the peaks! We therefore call them acoustic peaks.

2.3. SILK DAMPING

So far we have neglected that the process of recombination takes a finite amount
of time and the ’surface of last scattering’ has a finite thickness. In reality the
transition from perfect fluid coupling with a very short meanfree path to free
photons with mean free path larger than the size of the horizon takes a certain
time during which photons can diffuse out of over–densitiesinto under–densities.
This diffusion damping or Silk damping (Silk, 1968 ) exponentially reduces CMB
anisotropies on small scales corresponding to`�>800. The precise damping scale
depends on the amount of baryons in the universe.



CMB ANISOTROPIES 5

Figure 1. The contribution from the photon density fluctuations (Dr -term, dashed line), from the
Doppler term (v � n, dotted line) and their sum (solid line) are shown. The peaksclearly follow the
acoustic contribution while the Doppler term dominates in the first few minima. Silk damping is not
included here.

In addition to Silk damping, the finite thickness of the recombination shell im-
plies that not all the photons in the CMB have been emitted at exactly the same
moment and therefore we do not see all the fluctuations precisely in phase. This
’smearing out’ also leads to damping of CMB anisotropies on about the same
angular scale as Silk damping.

To calculate these phenomena with good precision one has to compute the pro-
cess of recombination numerically and integrate the photonBoltzmann equation.
Since a couple of years there are public codes available (Seljak & Zaldarriaga,
1996 ; Lewiset al., 2000 ) which compute the CMB anisotropies numerically with
a precision of about 1%.

2.4. POLARIZATION

There is an additional phenomenon which we have not considered so far: Non-
relativistic Thompson scattering, which is the dominant scattering process on the
surface of last scattering, is anisotropic. The scatteringcross section for photons
polarized in the scattering plane is (Jackson, 1975 )

σ== = 3σT

8π
cos2 θ ;

while the cross section for photons polarized normal to the plane is

σ? = 3σT

8π
:

HereσT is the Thomson cross section andθ is the scattering angle. Therefore,
even if the incoming radiation is completely unpolarized, if its intensity is not
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perfectly isotropic (actually if it has a non-vanishingquadrupole) the outgoing radi-
ation will be linearly polarized. There exist two types of polarization signals: the so
calledE-type polarization which has positive parity, andB-type polarization which
is parity odd. Scalar perturbations only produceE-type polarization, while tensor
perturbations, gravity waves, produce both,E- and B-type. Thomson scattering
never induces circular polarization.

A more detailed treatment of polarization of CMB anisotropies can be found
e.g. in (Hu et al., 1998 ). A typical CMB anisotropy and polarization spectrum
as it is expected from inflationary models is shown in Fig. 2. Polarization of the
CMB has not yet been observed. The best existing limits are onthe order of a
few�10�6. There is hope that the next Boomerang flight (planned for December
2001) or the MAP satellite (MAP, website ), which has been launched successfully
in June 2001, will detect polarization.

Figure 2.The scalar (left) and tensor (right) CMB anisotropy and polarization spectra. Solid lines
show the temperature anisotropy, dashed linesE-polarization and dotted linesB-polarization. The
thick lines represent a model with critical density,Ω0 = 1 while the thin lines come from an open
model,Ω0= 0:4. The normalization is arbitrary. Figure from Huet al.(1998).

3. Cosmological parameters and degeneracy

In the simplest models for structure formation where adiabatic Gaussian perturba-
tions are created during an inflationary phase, initial perturbations are characterized
by two to four numbers: The amplitudes and spectral indices of scalar and ten-
sor perturbations. Apart from these data characterizing the initial conditions, the
resulting CMB anisotropies depend only on the cosmologicalparameters of the
underlying model, the matter density parameter,Ωm, the cosmological constant,
ΩΛ, curvature,ΩK = 1�Ω0, the Hubble parameter,h= H0=(100km=s=Mpc), the
(reduced) baryon densityωb = Ωbh2, the reionization history, which is usually cast
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into an effective depth to the last scattering surface,τc, and a few others. Therefore,
if the model of structure formation is a simple adiabatic inflationary model, CMB
anisotropies can be used to determine cosmological parameters. The presently
available data have been used for this goal in numerous papers and slightly different
approaches have led to slightlydifferent but, within the still considerable error bars,
consistent results (see e.g. (de Bernardiset al., 2000 ; Prykeet al., 2001 ; Langeet
al., 2001 ) and many others). As an example we show the results of de Bernardiset
al. (2001). In Fig. 3 the likelihood functions for the total density parameter,Ω0, the
scalar spectral index,ns, and the baryon density,ωb, as obtained from the COBE
DMR and the BOOMERANG data are shown (de Bernardiset al., 2001 ). An adia-
batic model with purely scalar perturbations, with 0:45< h< 0:95 and with an age
larger than 10Gyr has been assumed for the determination of the likelihoods. The
solid lines, which have been obtained by marginalization over all the parameters
not shown on the panel, are the most relevant. They implyΩ0 = 1:02�0:06,ns =
1:02� 0:1 andωb = 0:024� 0:005. The latter value coincides most remarkably
with the completely independent determination from nucleosynthesis result (Burles
et al., 2001 ) which yieldsωb = 0:019�0:02.

Figure 3.The likelihood curves derived from the BOOMERANG and COBE/DMR data sets for the
variablesΩtot = Ω0, ns andΩbh2 = ωb for a model with purely scalar adiabatic fluctuations are
shown. The solid lines are marginalized over the other variables while for the dashed lines (and the
open circles) the maximum likelihood point in the other variables is chosen; from de Bernardiset
al. (2001).

The most interesting outcome from these parameter estimations is that if initial
perturbations are adiabatic, the Universe is very close to flat. Together with the
cluster data which indicate 0:1� Ωm� 0:3 this suggests, completely independent
from the supernova results, that the density of the universeis dominated by a non-
clustered form of dark energy,e.g.a cosmological constant withΩΛ � 0:7.

However promising this procedure is, it is important to keepin mind that there
are certain exact degeneracies in the CMB data which cannot be removed by CMB
data alone. Let us consider, for example, the parametersΩm;ΩΛ;Ωb;h. Apart from
the ISW contribution which is relevant only at low values` where cosmic variance
prohibits a precise determination, the CMB anisotropies depend on these parame-
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ters only via the baryon density,ωb, the matter densityωm= Ωmh2 and the angular
diameter distance given byddec= χ(η0�ηdec), where

χ(y) =8<: sin(y) if K > 0
sinh(y) if K < 0
y if K = 0;

and

y= η0�ηdec=pjΩKjZ zdec

0

dz[Ωm(1+z)3+ΩK(1+z)2+ΩΛ℄1=2
:

The CMB anisotropies for̀�>50 only depend on the following three combina-
tions of the four parameters considered:R� ddec(ΩΛ = 0;Ωm = 1)=ddec(ΩΛ =
0;Ωm); ωb andωm. In Fig. 4 lines of constantRare indicated in theΩΛ–Ωm plane.

1 10 100 1000
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Figure 4. left: The lines of constantR are shown in theΩΛ–Ωm plane. The values
ΩΛ;Ωm for which the CMB anisotropy spectra are shown right are indicated as black dots.
right:Three CMB anisotropy spectra with different values ofΩΛ andΩm but fixedR are shown.
For`�>50 these spectra are clearly degenerate.The solid line represents a flat model, while the dotted
line corresponds to a closed and the dashed line to an open universe, from Trotta (2001).

The degeneracy is shown in Fig. 4 for a fixed value ofR but different points in
theΩΛ–Ωm plane.

It is hence not possible to determine all four parametersΩm;ΩΛ;Ωb;h with
good accuracy from CMB data alone. There exist also other degeneracies,e.g.be-
tween the spectral index and the epoch of reionization or theamplitude of tensor
perturbations.

We therefore consider it very important that CMB anisotropymeasurements are
complemented with other, more direct methods to measure cosmological parame-
ters so that this degeneracies are broken, and also to obtaina comfortable degree
of redundancy.
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4. Model dependence

Apart from the degeneracies mentioned in the previous section, the cosmological
parameters inferred form CMB anisotropies very strongly depend on the model
assumptions. For example, in the case of isocurvature instead of adiabatic initial
perturbations, for a model with critical density the first acoustic peak is at̀� 350,
and a peak at̀ � 210 indicates a closed universe. However, a closed model with
isocurvature perturbations has acoustic peaks which are narrower and more closely
spaced than those seen in the data. One such model, together with the data, is shown
in Fig. 5. More details can be found in (Durreret al., 2001a ; Durreret al., 2001b
).

Figure 5. CMB anisotropies for three different models are shown, together with the Boomerang
(solid, red) and Maxima (dashed, green) data. The short dashes show a standard adiabatic inflationary
model, the long dashes show a closed isocurvature model, while the solid line shows another so called
’scaling seed’ model. Figure from Durreret al. (2001b).

Very generic initial conditions for a universe with dark matter, photons, baryons
and neutrinos are combinations of the adiabatic mode and four different isocurva-
ture modes which may or may not be correlated (Bucheret al., 2000 ). The initial
conditions are then specified by a 5� 5 positive definite matrix, the correlation
matrix of the different modes. It is interesting to compare parameter estimation
when allowing for this more generic initial conditions to the parameters obtained
from the data when allowing only for the adiabatic mode. As anexample we show
the confidence ranges in theh;ωb plane for both cases in Fig. 6 (see Trottaet
al. (2001)).
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Figure 6. The h;ωb confidence contours as obtained from the Boomerang data (Netterfield et al.,
2001 ), when allowing only for the adiabatic mode (left) and when allowing for a general correlated
mixture of the adiabatic and isocurvature modes (right). Figure from Trottaet al.(2001).

Clearly, once allowing for isocurvature modes one cannot obtain anymore rea-
sonable upper limits forωb orh. What I find even more interesting here is that once
we requireωb� 0:02�0:002 due to the nucleosynthesis constraint andh� 0:65�
0:1 as favored by several independent estimates, we find that the isocurvature
content in the initial conditions has to be relatively modest, �<30%.

Nevertheless, I believe that the above makes it clear that estimation of cosmic
parameters by CMB anisotropies is strongly model dependent.

5. Conclusions

In this talk I have discussed the physics of CMB anisotropiesand what we can
learn from them. I have been relatively critical in my account of cosmic parameter
estimation from CMB anisotropies. This because in the very abundant literature on
the subject, little emphasis is given on the model dependence of this way of ’mea-
suring’ cosmological parameters. Clearly every measurement in physics and even
more so in cosmology depends on the underlying theory. But usually the theory has
been tested before in many different setups, while in cosmology, CMB anisotropies
are probably the best experimental data to test theories forcosmological initial
perturbations,i.e. to investigate cosmological perturbations at a very early stage.
Therefore I find it to some extent a waste if one uses these datasimply to determine
a few numbers which can also be measured much more directly (e.g.by kinematic
measurements with SNeIa’s).

On the other hand, it is intriguing how well the present CMB data can be fit by
the simplest adiabatic model of scalar perturbations with cosmological parameters
well within the range obtained by other measurements.
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