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a, Universit�a degli Studi di Parma, Par
o Area delle S
ienze 7A, 43100 Parma, ItalyWe 
ompute the gravity waves indu
ed by anisotropi
 stresses of sto
hasti
 primordial magneti
�elds. The nu
leosynthesis bound on gravity waves is then used to derive a limit on the magneti
�eld amplitude as fun
tion of the spe
tral index. The obtained limits are extraordinarily strong:If the primordial magneti
 �eld is produ
ed by a 
ausal pro
ess, leading to a spe
tral index n � 2on super horizon s
ales, gala
ti
 magneti
 �elds produ
ed at the ele
troweak phase transition orearlier have to be weaker than B� � 10�27Gauss! If they are indu
ed during an in
ationary phase(reheating temperature T � 1015GeV) with a spe
tral index n � 0, the magneti
 �eld has to beweaker than B� � 10�39Gauss! Only very red magneti
 �eld spe
tra, n � �3 are not strongly
onstrained. We also �nd that a 
onsiderable amount of the magneti
 �eld energy is 
onverted intogravity waves.The gravity wave limit derived in this work rules out most of the proposed pro
esses for primordialseeds for the large s
ale magneti
 �elds observed in galaxies and 
lusters.PACS Numbers : 98.80.Cq, 98.70.V
, 98.80.HwI. INTRODUCTIONOur galaxy, like most other spiral galaxies, is perme-ated by a magneti
 �eld of the order of B � 10�6Gauss.Re
ently, similar magneti
 �elds have also been observedin 
lusters of galaxies on s
ales of up to � � 0:1Mp
 [1,2℄.There is an ongoing debate whether su
h �elds 
an beprodu
ed by 
harge separation pro
esses during galaxyand 
luster formation [3℄ or whether primordial seed�elds are needed, whi
h have then been ampli�ed by sim-ple adiabati
 
ontra
tion or by a dynamo me
hanism. Inthe �rst 
ase, seed �elds of B � 10�9Gauss are neededwhile in the se
ond 
ase B � 10�20Gauss [3℄ or even10�30Gauss in a universe with low mass density [4℄ suf-�
e. Several me
hanisms have been proposed for the ori-gin of su
h seed �elds, ranging from in
ationary produ
-tion of magneti
 �elds [5{7℄ to 
osmologi
al phase tran-sitions [8℄.Primordial magneti
 �elds have been 
onstrained inthe past in various ways mainly by using their e�e
t onanisotropies in the 
osmi
 mi
rowave ba
kground [9{14℄.In these works 
onstant magneti
 �elds and sto
hasti
�elds with red spe
tra n � �3 [14℄ have been 
onsid-ered and the limits obtained where of the order of afew�10�9Gauss. A simple order of magnitude estimateshows that, from the CMB alone, one 
annot expe
tmu
h stronger 
onstraints of magneti
 �elds: The energydensity in a magneti
 �eld is
B = B28��
 ' 10�5

(B=10�8Gauss)2 ; (1)where 

 is the density parameter in photons. Wenaively expe
t a magneti
 �eld of 10�8Gauss to indu
eperturbations in the CMB on the order of 10�5, whi
hare just on the level of the observed CMB anisotropies. Itis thus expe
ted that CMB anisotropies 
annot 
onstrainprimordial magneti
 �elds to better than a few tenths ofthis amplitude.

In this work we 
onstrain magneti
 �elds by the gravitywaves whi
h they indu
e 
lassi
ally, via the anisotropi
stresses in their energy momentum tensor. These grav-ity waves lead to mu
h stronger 
onstraints than CMBanisotropies, espe
ially for spe
tral indi
es n > �3. This
omes from the fa
t that the spe
trum of the gravity waveenergy density indu
ed by sto
hasti
 magneti
 �elds is al-ways blue (ex
ept for n = �3 where it is s
ale invariant)and thus leads to stronger 
onstraints on small s
alesthan on the large s
ales probed by CMB anisotropies.The e�e
ts of a 
onstant magneti
 �eld on gravity waveevolution and produ
tion have been studied in [16℄. Herewe 
on
entrate on the produ
tion of gravity waves, but
onsider a sto
hasti
 magneti
 �eld.The remainder of this paper is organized as follows:In the next se
tion we de�ne the initial magneti
 �eldspe
trum and its evolution in time, and we determine themagneti
 stress tensor whi
h sour
es gravity waves. InSe
tion 3 we 
al
ulate the indu
ed gravity wave spe
trumand estimate the e�e
t of ba
k-rea
tion. In Se
tion 4we derive limits on the primordial magneti
 �eld usingthe nu
leosynthesis limit on gravity waves and dis
ussour 
on
lusions. In order not to loose the 
ow of thearguments, several te
hni
al derivations are deferred tothree appendi
es.We use 
onformal time whi
h we denote by �; the s
alefa
tor is a(�). Derivatives w.r.t 
onformal time are de-noted by an over-dot, dad� = _a. We normalize the s
alefa
tor today to a(�0) = 1. The index 0 on a time depen-dent variable always indi
ates today. We assume a spa-tially 
at universe with vanishing 
osmologi
al 
onstantthroughout. Negle
ting a possible 
osmologi
al 
onstantmodi�es the evolution of the s
ale fa
tor only at very latetimes, z < 2 and is therefore irrelevant for the results ofthis paper. We set the speed of light 
 = 1 so that timesand length s
ales 
an be given in units of se
, 
m or Mp
,whatever is 
onvenient. With our 
onventions, the s
ale1



fa
tor is given bya(�) = H0�(H0�4 +p
rad) ; (2)where H0 = (3:086� 1017se
)�1h0 is the Hubble param-eter, 0:5 < h0 < 0:8 and 
rad = 4:2 � 10�5h�20 is theradiation density parameter (photons and three types ofmassless neutrinos).Note that the s
ale fa
tor has no units, but 
onformaltime and 
omoving distan
e do. The normalization ofa implies that 
omoving distan
e be
omes physi
al dis-tan
e today. The 
onformal time � is the 
omoving sizeof the horizon. The relation between � and redshift ortemperature is simplyz(�) = 1a(�) � 1 ;T (�) = z(�)T0 ' z(�)2:4� 10�4eV : (3)The 
omoving time of equal matter and radiation, de�nedby a(�eq)�3 = 
rada(�eq)�4 or zeq + 1 = 
�1rad, is�eq = 2(p2� 1)p
radH�10 � 1:7� 1015se
: (4)Greek indi
es run from 0 to 3, Latin ones from 1 to 3.Spatial (3d) ve
tors are denoted in bold.II. PRIMORDIAL STOCHASTIC MAGNETICFIELDSIn this se
tion we 
losely follow Ref. [14℄. During theevolution of the universe, the 
ondu
tivity of the inter-gala
ti
 medium is e�e
tively in�nite. We 
an de
ouplethe time evolution of the magneti
 �eld from its spatialstru
ture: B s
ales like B2(�;x) = B20(x)=a4 on suÆ-
iently large s
ales. (In our 
oordinate basis Bi / 1=aand Bi / a�3 as 
an be derived easily from Maxwell'sequations in 
urved spa
etime with vanishing ele
tri
�eld, see e.g. [17℄). On smaller s
ales, the intera
tionof the magneti
 �eld with the 
osmi
 plasma be
omesimportant, leading mainly to two e�e
ts: on interme-diate s
ales, the �eld os
illates like 
os(vAk�), wherevA = (B2=(4�(� + p)))1=2 is the Alfv�en velo
ity, andon very small s
ales, the �eld is exponentially dampeddue to shear vis
osity [18{20℄. We will take into a

ountthe time dependent damping s
ale as a time dependent
uto� kd(�) in the spe
trum of B. As we shall see, our
onstraints 
ome from small s
ales where the spe
trumis exponentially damped and os
illations 
an be ignored.We therefore disregard them in what follows. The ex-pressions for kd(�) are derived in Appendix A. The onlyresult of this appendix relevant here is that the dampings
ale 1=kd(�) grows like a positive power � > 0 of � and isalways smaller than the horizon s
ale, kd(�) / 1=�� andkd(�) > 1=�. The reader not interested in the details of

damping and 
on�dent with this relatively obvious result,
an skip Appendix A.We model B0(x) as a statisti
ally homogeneous andisotropi
 random �eld. The transversal nature of B thenleads tohBi(k)B�j(q)i = Æ3(k� q)(Æij � k̂ik̂j)B2(k) : (5)We use the Fourier transform 
onventionsBj(k) = Z d3x exp(ix � k)Bj0(x) ;Bj0(x) = 1(2�)3 Z d3k exp(�ix � k)Bj(k) ;and k̂ = k=k, k = pPi(ki)2; k is the wave ve
tor to-day whi
h is also the 
o-moving wave ve
tor. Its unit isinverse length whi
h we will express in se
�1.We want to derive a limit on the amplitude of magneti
�elds on the s
ale � � 0:1Mp
 generated by a primordialpro
ess whi
h took pla
e before � = 0:1Mp
 � 1013se

orresponding to T � 1keV. Hen
e we are mainly in-terested in magneti
 �elds generated on super horizons
ales. As we shall see, our limits only apply for �eldsgenerated before nu
leosynthesis, T > Tnu
 ' 0:1MeV.The main examples we have in mind are in
ationary gen-eration of magneti
 �elds [5,6℄, magneti
 �elds generatedin string 
osmology [7℄ and magneti
 �elds generated dur-ing the ele
troweak phase transition [8℄.In the �rst two examples, a simple power law magneti
�eld spe
trum with upper 
uto� k
 ' ��1in is generated.The 
onformal time �in marks the end of in
ation or thestring s
ale respe
tively.Ele
troweak magneti
 �eld produ
tion is 
ausal, lead-ing mainly to �elds on s
ales smaller than the size ofthe horizon at the phase transition, �ew ' 4 � 104se
' 1015
m ' 3� 10�4p
. These sub-horizon �elds, whi
h
annot propagate into larger s
ales during the linear evo-lution dis
ussed in this paper, and whi
h are essentiallydamped by vis
osity, will be negle
ted in this paper. Mo-tivated from in
ation, we simply impose an initial 
ut-o� s
ale k
(�in) = 1=�in. Allowing for more small s
alepower, as it is 
ertainly present initially in 
ausal me
ha-nisms, only strengthens our result whi
h a
tually 
omesfrom the smallest s
ales not a�e
ted by damping.If B is generated by a 
ausal me
hanism, it is un
or-related on super horizon s
ales,hBi(x; �)Bj(x0; �)i = 0 for jx� x0j > 2� : (6)Here it is important, that the universe is in a stageof standard Friedman expansion, so that the 
omoving
ausal horizon size is about �. During an in
ationaryphase, the 
ausal horizon diverges and our subsequentargument does not apply. In this somewhat misleadingsense, one 
alls in
ationary perturbations 'a-
ausal'.A

ording to Eq. (6), hBi(x; �)Bj(x0; �)i is a fun
tionwith 
ompa
t support and hen
e its Fourier transform isanalyti
. The fun
tion2



hBi(k)B�j(k)i � (Æij � k̂ik̂j)B2(k) (7)is analyti
 in k. If we assume also that B2(k) 
an beapproximated by a simple power law, we must 
on
ludethat B2(k) / kn, where n � 2 is a even integer. (Awhite noise spe
trum, n = 0 does not work be
ause ofthe transversality 
ondition whi
h has led to the non-analyti
 pre-fa
tor Æij � k̂ik̂j .) By 
ausality, there 
anbe no deviations from this law on s
ales larger than thehorizon size at formation, �in. As explained above, wenegle
t �elds on smaller s
ales by a simple 
uto�.We assume that B0 is a Gaussian random �eld. Al-though this is not the most general 
ase, it greatly sim-pli�es 
al
ulations and gives us a good idea of what toexpe
t in more general situations.Using Wi
k's theorem for Gaussian �elds we 
an 
al-
ulate the 
orrelator of the tensor 
ontribution to theanisotropi
 stresses indu
ed by the magneti
 �eld, whi
hwe denote by �ij . One �nds (see Appendix B)h�ij(k; �)��lm(k0; �)i = j�(k; �)j2=a12MijlmÆ(k� k0)h�ij(k; �)��ij (k0; �)i = 4a8 f2(k; �)Æ(k � k0); (8)whereMijlm(k) � ÆilÆjm + ÆimÆjl � ÆijÆlm + k�2(Æijklkm +Ælmkikj � Æilkjkm � Æimklkj � Æjlkikm�Æjmklki) + k�4kikjklkm ; (9)andf(k)2 = 116(2�)8 Z d3qB2(q)B2(jk� qj)(1 + 2
2 + 
2�2) ;(10)with 
 = k̂ � q̂ and � = k̂ � dk� q. For this result wemade use of statisti
al isotropy, whi
h implies that thetwo spin degrees of freedom of �ij have the same averageamplitude. More expli
itly: in a 
oordinate system wherek is parallel to the z-axis, �ij has the form(�ij) = 0� �+ �� 0�� ��+ 00 0 0 1A ;together with Eq. (8), statisti
al isotropy then giveshj�+j2i = hj��j2i = 1a4 f2 : (11)To 
ontinue, we have to spe
ify B2(k). For simpli
itywe assume a simple power law with 
uto� k
 whi
h 
andepend on time. As all s
ales smaller than 1=kd(�) aredamped, 
learly we have to require k
(�) � kd(�). Moti-vated by in
ationary magneti
 �eld produ
tion we 
hoosek
(�in) � 1=�in, the primordial magneti
 �eld is 
oherentup to the horizon size at formation. For magneti
 �elds

produ
ed during the ele
troweak phase transition, the'
oheren
e s
ale' is substantially smaller [21℄, k
(�in) �1=�in whi
h would strengthen our limit as we shall see.Sin
e it is unphysi
al to assume k
(�in) < 1=�in, ourassumption is 
onservative. We setk
(�) = min(1=�in; kd(�)) :It is important to keep in mind, that this 
uto� s
ale isalways smaller than the horizon s
ale.We now 
an parameterize B2 byB2(k) = ( (2�)52 (�=p2)n+3�[n+32 ℄ B2�kn for k < k
0 otherwise. (12)The normalization is su
h thatB2� = 1V Z d3rhB0(x)B0(x+ r)i exp(� r22�2 ) ; (13)where V = R d3r exp(�r2=2�2) = �3(2�)3=2 is the nor-malization volume. (We have assumed that the 
ut-o� s
ale is smaller than �.) We will �nally �x � =0:1h�1Mp
, the largest s
ale on whi
h 
oherent magneti
�elds have been observed; but the s
aling of our resultswith � will remain obvious.The energy density in the magneti
 �eld at some ar-bitrary s
ale ` is / B2̀ / B2(k)k3jk=1=` / `�(n+3). Inorder not to over-produ
e long range 
oherent �elds, wemust require n � �3. For n = �3 we obtain a s
aleinvariant magneti
 �eld energy spe
trum.Using Eqs. (12) and (10) we 
an 
al
ulate f . The inte-gral 
annot be 
omputed analyti
ally, but the followingresult is a good approximation for all wave numbers k [14℄f2(k; �) ' A�� k
(�)2n+3 for n � �3=2k2n+3 for n � �3=2 : (14)withA = (2�)316 (�=p2)2n+6B4��2[n+32 ℄For n > �3=2, the gravity wave sour
e � is white noise,independent of k. Only the amplitude, whi
h is propor-tional to (�k
)2n, depends on the spe
tral index. Thisis due to the fa
t that the integral (10) is dominated bythe 
ontribution from the smallest s
ale k�1
 . The in-du
ed gravity wave spe
trum will therefore be a whitenoise spe
trum for all n > �3=2.III. GRAVITY WAVES FROM MAGNETICFIELDSWe now pro
eed to 
al
ulate the gravity waves indu
edby the magneti
 �eld stress tensor. The metri
 elementof the perturbed Friedman universe is given byds2 = a2(�)[d�2 � (Æij + 2hij)dxidxj ℄ ;3



where hii = 0 and hjiki = 0 for tensor perturbations. Themagneti
 �eld sour
es the evolution of hij through�hij + 2 _aa _hij + k2hij = 8�G�ij : (15)�ij is a random variable, but its time evolution is deter-ministi
, it evolves in time simply by redshifting and bythe evolution of the 
uto�. Ea
h 
omponent is given by��(k; �) = 1a2 f(k; �)~��(k) ;where ~��(k) is a time independent random variable withpower spe
trum hj~��(k)j2i = 1. Therefore, also ea
h
omponent of the indu
ed gravity wave is given byh�(k; �) = h(k; �)~��(k) ;where h(k; �) is a solution of�h+ 2 _aa _h+ k2h = 8�Ga2(�)f(k; �) : (16)The gravity wave power spe
trum is then given byh _hij(k; �) _h�ij(k0; �)i = 4_h2(k; �)Æ(k � k0) : (17)In real spa
e ,the energy density in gravity waves is�G = h _hij _hiji16�Ga2 :The fa
tor 1=a2 
omes from the fa
t that _h denotes thederivative w.r.t. 
onformal time. Fourier transformingthis relation, we obtain with Eq. (17)�G = Z k
0 dkk d�G(k)d log(k) ; (18)with d�G(k)d log(k) = k3 _h2a2(2�)6Gsu
h thatd
G(k)d log(k) � d�G(k)�
 d log(k) = k3 _h2a2�
(2�)6G ; (19)where �
 = 3H20=(8�G) denotes the 
riti
al density to-day. In Appendix C we solve Eq. (16) for n < �3=2, whenf is time independent, and we show that for wave num-bers whi
h enter the horizon in the radiation dominatedera, the density parameter in gravity waves produ
ed bythe magneti
 �eld 
an be expressed asd
G(k)d log(k) ' 12k3f(k)2 log2(xin)�2

rad(2�)5 ; (20)for n � �3=2 :

Fourier transforming the expression for the magneti
 �eldenergy �B = hB2(x)i=(8�), we obtain the magneti
 �elddensity parameter at time �,d
B(k)d log(k) = B2�8��
 (k�)n+32(n+3)=2�(n+32 ) (21)
B(�) = 
B(k
(�)) = Z k
(�)0 dkk d
B(k)d log(k)= B2�8��
 (k
�)n+32(n+5)=2�(n+52 ) : (22)Note that 
B may well be 
onsiderable on small s
ales,sin
e this is the magneti
 �eld energy at very early timeswhi
h 
an be damped and transformed, e.g. into radi-ation later. But of 
ourse, for our perturbative 
al
u-lation to apply, we must require d
B(k)d log(k) < 
rad duringthe radiation dominated era. Using Eqs. (21,22) and theresult (14) for f , we obtain from Eq. (20)d
G(k)d log(k) ' (d
B(k)d log(k) )2
rad 24 log2(xin) ; (23)for � 3 < n < �3=2
G = Z 1=�in0 dkk d
G(k)d log(k)' 
2B(�in)
rad 12(n+ 3) ; (24)for � 3 < n < �3=2 :In the integrated formula for 
G we have negle
ted thelogarithmi
 dependen
e log2(xin).If n > �3=2 the result 
hanges sin
e f now dependson time via the 
uto� k
(�) = min(1=�in; kd(�)). Clearly,kd(�in) > 1=�in by 
ausality. We de�ne the time �vis
 tobe the moment when the damping s
ale be
omes smallerthan �in, kd(�vis
) = 1=�in. From that time on, thefun
tion f de
ays like a power law,f2(k; �) / k2n+3d / f2(k; �in)(�vis
=�)�(2n+3) ;where � is a positive power des
ribing the growth ofthe vis
osity damping s
ale. Hen
e, the sour
e term ofEq. (16) starts to de
ay faster than 1=a2, and additionalgravity wave produ
tion after �vis
 is sub-dominant. Wenegle
t it in our attempt to derive an upper limit forprimordial magneti
 �elds. For n > �3=2, the grav-ity wave solution given in Appendix C, Eq. (C5) is thensimply modi�ed by � log(xin) ! log(xvis
=xin), sin
ethe integral of the gravity wave sour
e term only hasto extend from xin to xvis
. Taking also into a

ountthat up to �vis
 the 
uto� s
ale is k
(�) = 1=�in, hen
ef2(k; �) / k2n+3
 = 1=�2n+3in , we obtaind
G(k)d log(k) ' �d
B(k)d log(k)�2 (k�in)�3�2n
rad 24 log2(xvis
=xin);4



for n > �3=2 (25)
G ' 
2B(�in)
rad 8(n+ 3)2 log2(�vis
=�in) ; (26)for n > �3=2 :In Appendix A, we estimate for the two examples of in-
ation, Tin � 1015GeV, �in � 8� 10�9se
 and the ele
-troweak phase transition, Tew � 200GeV, �in = �ew �4� 104se
,�vis
=�in ' 109 for in
ation �in = 8� 10�9se
;�vis
=�ew >� 3000 for ew. trans. �ew � 4� 104se
 :Up to logarithms, the �nal formula for gravity wave pro-du
tion is nearly the same for all values of the spe
tralindex (
f. Eqs. (26) and (24)).In these formulas ba
k-rea
tion, namely the de
reaseof magneti
 �eld energy due to the emission of grav-ity waves, is not in
luded. Therefore Eqs. (23,24) and(25,26) are reasonable approximations only if 
G <� 
B .In the opposite 
ase, whi
h is realized whenever
B(�in) >� 
BG(n)� ( 
rad12(n+3) for n < �3=2
rad8(n+3)2 log2(�vis
=�in) for n > �3=2= 8<: 3:3�10�6h�20(n+3) for n < �3=25�10�6h�20(n+3)2 log2(�vis
=�in) for n > �3=2 ; (27)the magneti
 �eld energy is fully 
onverted into grav-ity waves. Note, however, that the value 
BG(n) is ingeneral not very mu
h smaller than 
rad, whi
h is anintrinsi
 limit on 
B for our perturbative approa
h.In Fig. 1 the values 
G and 
B(�in) as fun
tions of thespe
tral index are shown for two di�erent 
hoi
es of the
reation time for the primordial magneti
 �eld: the ele
-troweak transition, �in = �ew � 4� 104se
 and in
ationwith �in � 8 � 10�9se
, for a magneti
 �eld amplitudeB� = 10�20 Gauss. They are 
ompared with the nu-
leosynthesis limit, whi
h 
omes from the fa
t that anadditional energy density may not 
hange the expansionlaw during nu
leosynthesis in a way whi
h would spoilthe agreement of the 
al
ulated Helium abundan
e withthe observed value. The maximum allowed additionalenergy density is given by [22℄
limh20 = 1:12� 10�6 : (28)

FIG. 1. We show 
Gh20 and 
B(�in)h20 as fun
tions of thespe
tral index n for two di�erent times of primordial magneti
�eld 
reation: the ele
troweak transition ( 
Gh20 dash-dotted,blue and 
B(�in)h20 short-dashed, red), and in
ation ( 
Gh2dotted, blue and 
B(�in)h20 long-dashed, red) for a �du
ial�eld strength B� = 10�20Gauss at � = 0:1Mp
. The nu-
leosynthesis limit, 
limh20 is also indi
ated. (The log- termshave been negle
ted.) Clearly, the regimes with 
B > 1 or
G > 1 are not physi
al and are just shown for illustration.We have also shown 
B(�nu
)h2, the magneti
 �eld densitywhi
h is simply 
ut o� at the nu
leosynthesis damping s
ale(fat solid line).From Fig. 1 we see that 
G as 
al
ulated above domi-nates over 
B(�in) for all spe
tral indi
es n > �2 in thein
ationary 
ase and n > 0 for ele
troweak magneti
 �eldprodu
tion, for an amplitude of B� = 10�20Gauss. Thisis due to the fa
t that we have negle
ted ba
k-rea
tionwhi
h leads to a loss of magneti
 �eld energy. Clearly,the magneti
 �eld 
annot 
onvert more than all its en-ergy into gravity waves. However, if our formula for 
Gleads to 
G > 
B(�in), it does a
tually 
onvert most ofits energy into gravity waves, before it is dissipated byplasma vis
osity, sin
e gravity wave produ
tion happensbefore and at horizon 
rossing, while vis
osity dampingis a
tive only on s
ales whi
h are well inside the horizon.We 
an take into a

ount ba
k-rea
tion by simply setting
G � 
B(�in) when our 
al
ulation gives 
G > 
B(�in).We shall use this approximation for 
G in what follows.Fig. 1 also shows that, sin
e the value of the magneti
�eld density parameter at whi
h 
onversion into gravitywaves is quasi 
omplete is so 
lose to the nu
leosynthesislimit, 
BG(n)h20 � 1:12� 10�6 � 
limh20, the two 
urves
Gh20 and 
B(�in)h20 
ross 
lose to 
limh20. This meansthat the gravity wave limit for magneti
 �elds is very
lose to the limit obtained by setting 
G = 
B(�in).Let us dis
uss the problem of ba
k-rea
tion in more de-tail. Even if 
G < 
B(�in), as soon as d
G(k)d log(k) > d
B(k)d log(k)5



for a given s
ale k�1, we 
an no longer negle
t ba
k-rea
tion for this s
ale. The spe
trum of 
G isd
G(k)d log(k) / � k2n+6; for n � �3=2k3; for n � �3=2;while d
B(k)d log(k) / kn+3. Hen
e for �3 < n < 0, the gravitywave spe
trum is bluer than the magneti
 �eld spe
trum.Sin
e there is no infrared 
uto�, at suÆ
iently low valuesof k we will always have d
G(k)d log(k) < d
B(k)d log(k) and ba
k rea
-tion is unimportant at low k. The value klim, below whi
hthis is the 
ase, 
an be determined from Eqs. (21,23) and(25). We �ndklim� �log2(klim�in)� 1n+3 ' � 
rad24
�� 1n+3 p2� [1026(10�20Gauss=B�)2℄ 1n+3p2; (29)for � 3 < n < �3=2klim�in ' 12  p8
rad24
in log2(�vis
=�in)!�1n� �2� 104(10�9Gauss=Bin)2log2(�vis
=�in) ��1n ; (30)for � 3=2 < n < 0;where 
� = B2�=(8��
) ' �d
B(k)d log(k)�k=1=� and
in = 
�(�in=�)n+3 ' �d
B(k)d log(k)�k=1=�in ;B2in = B2�(�=�in)n+3.If klim > 1=�in, e.g. if the square bra
ket in Eq. (30)is larger than unity, ba
k-rea
tion is never important.For n = 0 the magneti
 �eld and gravity wave energydensities have the same spe
tral index and the 
ondi-tion that gravity wave ba
k-rea
tion be
omes importantis s
ale independent. In this 
ase it simply reads
in � 
radp824 log2(�vis
=�in) : (31)The situation is di�erent for n > 0. Then the gravitywave spe
trum is less blue than the magneti
 �eld spe
-trum and ba
k rea
tion is always important at suÆ
ientlylow k, large s
ales.When ba
k rea
tion is important, it leads to damp-ing of the primordial magneti
 �elds on large s
ales andwill a
tually damp the �eld down to values for whi
hba
k-rea
tion is unimportant. This 
an be seen as fol-lows: gravity wave produ
tion takes pla
e until �ij(k),the tensor 
omponent of the magneti
 �eld stress tensor,

vanishes. But then f2(k) = 0 whi
h implies a

ording toEq. (10)B2(q)B2(jk� qj) = 0 for all 0 � q � k
:For n < 0 the quadrati
 nature of the 
oupling of B togravity waves a
tually damps the magneti
 �eld energyat least on all wave numbers q > klim=2.For n > 0, ba
k-rea
tion redu
es �ij(k) /R d3qB2(q)B2(jk � qj) for small enough values of k. Inthe limit k ! 0, this indi
ates that ba
k-rea
tion dampsthe magneti
 �eld on all s
ales until it be
omes unim-portant. It is diÆ
ult to de
ide without a detailed 
al
u-lation how the magneti
 �eld spe
trum will a
tually bea�e
ted, but it seems reasonable to assume that ba
k-rea
tion will alter it until n ' 0 and the amplitude untilinequality (31) is violated. We 
an therefore assume thatin late time magneti
 �elds inequality (31) is always vio-lated if the magneti
 �eld spe
tral index is n >� 0.We �nd this a very important result, whi
h 
an besummarized as follows: Magneti
 �elds on super-horizons
ale with a density whi
h is suÆ
iently 
lose to the ra-diation density are strongly damped into gravity waveswhen they enter the horizon. Note also that 'suÆ
iently
lose' 
an even mean several orders of magnitude smallersin
e log2(k�in) 
an easily be
ome of order 100 or more.Furthermore, primordial magneti
 �elds produ
ed on su-per horizon s
ales have their spe
tral index 
hanged bygravity wave produ
tion to n <� 0 on
e they enter thehorizon.During the matter dominated era gravity wave produ
-tion is somewhat less eÆ
ient [14℄; and sin
e the s
alesof interest for us are sub-horizon in the matter era we donot dis
uss it here.IV. LIMITS AND CONCLUSIONSThe �rst limit for primordial magneti
 �elds produ
edbefore nu
leosynthesis is simply that the energy densitywhi
h they 
ontribute may not 
hange the expansion lawduring nu
leosynthesis. As already mentioned, this 
on-dition implies [22℄
B(�nu
)h20 � 1:12� 10�6 = 
limh20 :Here we have disregarded the loss of magneti
 �eld energyinto gravity waves whi
h will, as we shall see, strengthenthe limit 
onsiderably. From Eq. (22) we have
B(�nu
) = B2�8��
 (k
(�nu
)�)n+32n+52 �(n+52 )' 4:5h�20 �10�13(5:9�106)n2n+52 �(n+52 ) � B�10�20G�2� �1013se
�n+3where we have insertedkd(�nu
) ' p2�T
b�
=(�3nu
mp
radH20 ) ' 105=�nu
6



' 6 � 10�7se
�1 (for details see Appendix A andRefs. [19,14,20℄). The density parameter 
B(�nu
) as afun
tion of the spe
tral index n is shown in Fig. 1.Together with the above 
onstraint, this gives alreadyan interesting limit on primordial magneti
 �elds withspe
tral indi
es n > �2, as shown in Fig. 2 (solid line).For 
ausal me
hanisms of seed �eld produ
tion, n � 2, iteven implies B� < 10�22Gauss.

FIG. 2. We show the nu
leosynthesis limit on B� (solidline) as fun
tion of the spe
tral index, n together with thelimit from gravity waves if the primordial �eld is produ
ed atthe ele
troweak transition (short-dashed) or during in
ation(long-dashed) for � = 0:1h�1Mp
' 1013se
.Nevertheless, the limit implied from the produ
tionof gravity waves is more stringent, sin
e the gravitywaves have been produ
ed at very early times, whenthe magneti
 �eld damping s
ale was mu
h smaller than1=kd(�nu
) � 1:7 � 106se
. The produ
tion of gravitywaves has prevented the magneti
 �eld energy from be-ing lost by vis
osity damping, sin
e gravity waves do notintera
t with matter in any substantial way.Setting 
G = 
B(�in) whenever the result ofEqs. (24,26) is larger than this limit, whi
h is the simplestway to a

ount for ba
k-rea
tion, the 
ondition
Gh20 < 1:12� 10�6 = 
limh20 (32)yields the 
onstraint for primordial magneti
 �elds 
re-ated at �in. For spe
tral indi
esn > �3 +r 
rad8
lim � �1 ;the value for 
G inferred from Eq. (26) be
omes largerthan 
B(�in) at the limiting value 
lim imposed from nu-
leosynthesis (in this approximation we have negle
tedthe fa
tor log2(�vis
=�in), whi
h 
an be 
onsiderable!).Then the magneti
 �eld damping due to gravity wave

produ
tions is very important. But also for smaller val-ues of the spe
tral index, n > �3, we have 
G � 
B(�in)for 
G � 
lim and there is still a 
onsiderable amount ofmagneti
 �eld damping due to gravity wave produ
tion.The results for primordial magneti
 �elds produ
ed atin
ation and at the ele
troweak s
ale are shown in Fig. 2(dashed lines). As 
an be seen for the two examples, pri-mordial magneti
 �elds produ
ed before nu
leosynthesisare very strongly 
onstrained. For all values of the spe
-tral index, the following expression is a good approxima-tion for the limit obtained:B�=10�9Gauss < 700h0 � (�in=�)(n+3)=2N (n) (33)where N (n) �s2n+52 ��n+ 52 � � 1 :This nu
leosynthesis bound be
omes stronger for smaller
uto� s
ales, larger k
, a

ording to Eq. (33) it s
ales like(k
�)�(n+3)=2. (Remember that we have set k
 = 1=�in.)If the seed �eld is produ
ed during an in
ationaryphase at GUT s
ale temperatures, where 
onformal in-varian
e 
an be broken e.g. by the presen
e of a dilaton,the indu
ed �elds must be smaller thanB� � 10�20Gaussfor n > �2. If seed �elds are produ
ed after in
ation,their spe
trum is 
onstrained by 
ausality. Deviationfrom a power law with n � 2 
an only be produ
ed onsub-horizon s
ales, k > 1=�in. Therefore our limit de-rived by setting B(k) = 0 on sub-horizon s
ales, k�in > 1,is the most 
onservative 
hoi
e 
onsistent with 
ausality.Me
hanisms whi
h still 
an produ
e signi�
ant seed�elds are either 'ordinary' in
ation, if the spe
tral indexn <� �2 or a late in
ationary phase at the ele
troweaks
ale (or even later) where a seed �eld with n <� 0 
anhave amplitudes of B� � 10�20Gauss.We also have found that magneti
 �elds whi
h 
on-tribute an energy density 
lose to the nu
leosynthesisbound, loose a 
onsiderable amount (if not all) of theirenergy into gravity waves, whi
h might be dete
table.In fa
t, the spa
e born interferometer approved by theEuropean Spa
e Agen
y and NASA, the Large Interfer-ometer Spa
e Antenna (LISA) whi
h has its most sen-sitive regime where it 
an dete
t 
Gh20 � 10�11 around10�3Hz� 1=�weak [22℄ will either dete
t or rule out allmagneti
 seed �elds with spe
tral index n >� �0:5 pro-du
ed around or before the ele
troweak phase transition.If LISA does not dete
t a gravity wave ba
kground, the
onstraint analogous to Eq. (33) for �in � 4 � 104se
yields B� < 10�20Gauss for all indi
es n > �0:5for all me
hanisms produ
ing seed �elds before or at theele
troweak phase transition.We 
on
lude that, most probably, magneti
 seed �eldshave to be produ
ed relatively late, or after nu
leosyn-thesis to evade the dis
ussed bounds. Our gravity wave7



bound is not relevant for magneti
 �elds whi
h are pro-du
ed on sub-horizon s
ales. But for � >� 0:1Mp
 toenter the horizon, this requires a temperature of 
reationT < 1keV. The only late time me
hanism found so farwhi
h 
ould lead to seed �elds is re
ombination, wherelarge s
ale �elds of the order of B � 10�20 Gauss 
anbe indu
ed by magneto-hydrodynami
 e�e
ts, and thedi�eren
e in the vis
osity of ele
trons and ions [23℄, a
harge separation me
hanism. Our work strongly 
on-strains pro
esses of quantum parti
le produ
tion (duringe.g. an in
ationary phase) as origin for the observedmagneti
 �elds and favors more 
onventional pro
esseslike 
harge separation in the late universe.A
knowledgment: We thank Pedro Ferreira,Mi
hele Maggiore and Roy Maartens for helpful dis
us-sions. This work is supported by the Swiss NSF.
APPENDIX A: DAMPING OF MAGNETICFIELDS BY VISCOSITYIn this appendix we determine the 
uto� fun
tionkd(�). We use the results found in [19,18℄ and [20℄.We split the magneti
 �eld into a high frequen
y and alow frequen
y 
omponent, separated by the Alfv�en s
ale,�A = vA�, where the Alfv�en velo
ityv2A = hB2i4�(�r + pr)depends on the low frequen
y 
omponent: hB2Ai =hB0i(x)Bi0(x)ij�A , vA � 4 � 10�4 � (BA=10�9Gauss)[14℄. The amplitude of the high frequen
y 
omponentthen obeys a damped harmoni
 os
illator equation, withdamping 
oeÆ
ient, D(�), depending on time and on themean free path of the di�using parti
les giving rise tovis
osity [19℄. In the os
illatory regime, we de�ne thedamping s
ale at ea
h time � to be the s
ale at whi
hone e-fold of damping has o

urred: R �0 D2 d� = 1. Thedamping term D is given by D = k2�
ol=a(�), where�
ol is the mean free path of the parti
le spe
ies withthe highest vis
osity whi
h is still suÆ
iently strongly
oupled to the magneti
 �eld. Long wave modes with1=k > vA� are not signi�
antly damped. We now deter-mine the damping s
ale as a fun
tion of time. To deter-mine whether a given mode with k > kd(�) is e�e
tivelydamped one has to de
ide whether it is in the os
illatoryregime, !0 = kvA > D = k2�
ol=a(�) where dampingreally has time to o

ur or in the 'over-damped' regimek < vAa(�)=2�
ol where amplitudes remain approxima-tively 
onstant. With vA this depends on the magneti
�eld under 
onsideration.

Let us now determine the damping s
ale. Before neu-trino de
oupling at T >� 1MeV 
orresponding to � <�1010se
, damping is due to both photon and neutrinovis
osity. The mean free path of photons is�
ol;
 ' 1�Tne ' a3(1:5� 1020se
) ;where �T = 6:65�10�25
m2 is the 
ross se
tion of Thom-son s
attering. For neutrinos, we take into a

ount s
at-tering with leptons as the prin
iple s
attering pro
essgiving rise to vis
osity:�
ol;� ' 1�wn� ' a5(7� 1048se
) ;where �w = G2FT 2 is the weak 
ross se
tion and GF =(293GeV)�2 is Fermi's 
onstant. Note that we set �h =
 = 1 so that a 
ross se
tion also 
an have the unitsGeV�2.Using the expression for the s
ale fa
tor given inEq. (2), one �nds that photon vis
osity dominates un-til � ' 105 se
, leading tokd(�) ' (2� 1010se
1=2)��3=2 : (A1)For � > 105 se
 neutrinos vis
osity takes over, with 
uto�fun
tion kd(�) = (4� 1015se
3=2)��5=2 (A2)during the os
illatory regime. The 
omoving wavenum-ber k is given here in units of se
�1.After � >� 1010se
 neutrinos de
ouple and the dominantvis
osity is again photon vis
osity leading to the 
uto�fun
tion (A1).Estimating the vis
osity time, namely kd(�vis
) =1=�in for in
ation, �in � 10�8se
 and the ele
troweakphase transition, �in = �ew ' 4 � 104se
, we �nd fromthe expressions above �vis
=�injin
ation � 3 � 109 and�vis
=�ew � 3000: The �rst result is 
al
ulated using pho-ton vis
osity is just approximative, sin
e we do not knowthe relevant 
ross se
tions up to the s
ale of in
ation,1015GeV, but we 
ertainly expe
t the value to be verylarge, sin
e intera
tions are strong and thus vis
osity isweak. The ele
troweak result, 
al
ulated using the neu-trino vis
osity, would be quite reliable in the os
illatoryregime. However, for magneti
 �elds B < 10�9Gauss,for whi
h the Alfv�en velo
ity is smaller than 10�4, thes
ale �vis
 is still in the over-damped regime. The time atwhi
h the s
ale 
an then e�e
tively be damped dependson the value of the magneti
 �eld. In this sense our re-sult is only a lower limit, �vis
=�ew >� 3000: This is notvery important for our �nal bounds, where we will evenset log �vis
=�in � 1, in order to obtain results whi
h areindependent of the time of magneti
 �eld 
reation.As an example we also determine the damping s
ale atnu
leosynthesis, T ' 0:1MeV, znu
 ' 4 � 108 whi
h weneed in Se
tion 4. Setting D�=2 = 1, we obtain8



kd(�nu
) = [2a(�nu
)�Tne(�nu
)=�nu
℄1=2 : (A3)Using ne = �

b=(mpa3), where mp is the proton mass,as well as our expression for the s
ale fa
tor one obtainskd(�nu
) ' 6� 10�7se
�1 ' 105=�nu
This 
an of 
ourse also be obtained by simply using�nu
 ' 1011se
 in the above fun
tion for photon vis
ositygiven in Eq. (A1). Again, whether or not this s
ale isin the os
illatory regime and 
an be e�e
tively damped,depends on the value of B(kd). For B(kd) � 10�6Gauss,whi
h satis�es the nu
leosynthesis bound, this is largelythe 
ase, and for magneti
 �elds of interest to us kd(�nu
)is the 
orre
t damping s
ale.At the end of the radiation dominated era, photonsde
ouple and vis
osity a
ts no more. Sin
e gravity waveprodu
tion in the matter dominated regime is not im-portant, we do not 
al
ulate the 
uto� fun
tion in thisregime.APPENDIX B: THE GRAVITY WAVE SOURCEOF STOCHASTIC MAGNETIC FIELDSThe Maxwell stress tensor of a magneti
 �eld in realspa
e is given byT ij(x; �) = 14� �Bi(x; �)Bj (x; �)�12gij(x; �)Bn(x; �)Bn(x; �)� :In Fourier spa
e, using the Fourier transform 
onventionadopted in this paper and the s
aling of the magneti
�eld with time, we haveT ij(k; �) = 14�(2�)3a6 Z d3q�Bi(q)Bj(k � q)�12Bl(q)Bl(k� q)Æij� ; (B1)where we have introdu
ed the fa
tor 1=a6 to transformthe present �eld Bi(k) = Bi(k; �0) ba
k to the physi-
al �eld Bi(k; �) = Bi(k)=a3. �ij(k; �) is the transversetra
eless 
omponent of T ij(k; �), whi
h sour
es gravitywaves. Here we give the details of the 
al
ulation ofits 
orrelation fun
tion, h�ij(k; �)��lm(k0�)i whi
h weuse to 
ompute the indu
ed gravity waves. The proje
-tor onto the 
omponent of a ve
tor transverse to k isPij = Æij � k̂ik̂j . Consequently P iaP jb proje
ts onto thetransverse 
omponent of a tensor. To obtain the trans-verse tra
eless 
omponent we still have to subtra
t thetra
e. Hen
e de�ning the proje
torP ijab = P iaP jb � 12P ijPabwe have

h�ij(k; �)��lm(k0; �)i = P ijabP lm
dhT ab(k; �)T �
d(k0; �)i :(B2)To simplify the 
al
ulation, we note that up to a tra
e,whi
h anyway vanishes in the proje
tion (B2), T ab(k; �)is just given by�ab(k; �) � 14�(2�)3a6 Z d3qBa(q)Bb(k� q) : (B3)We therefore 
an writeh�ij(k; �)��lm(k0; �)i = P ijabP lm
dh�ab(k; �)��
d(k0; �)i :(B4)To 
ompute the two point 
orrelator of �, we use expres-sion (B3) and the assumption that the random magneti
�eld be Gaussian, so that we 
an apply Wi
k's theorem.In other words, produ
ts of four magneti
 �elds 
an beredu
ed byhBi(k)B�j(q)Bn(s)B�m(p)i =hBi(k)B�j (q)ihBn(s)B�m(p)i+hBi(k)Bn(s)ihB�j(q)B�m(p)i+hBi(k)B�m(p)ihBn(s)B�j(q)i : (B5)Using also the reality 
ondition, B�a(k) = Ba(�k),and the two point 
orrelator (5), we obtainh�ab(k; �)��
d(k0; �)i = a�124(2�)8 Z d3qd3p[Æ(k)Æ(k0)�B2(q)B2(�p)(Æab � q̂aq̂b)(Æ
d � p̂
p̂d) ++Æ(q� p)Æ(k � q� k0 + p)B2(q)B2(jk � qj)�(Æa
 � q̂aq̂
)(Æbd � ( dk� q)b( dk� q)d) ++Æ(q� k0 + p)Æ(k � q� p)B2(q)B2(jk � qj)�(Æad � q̂aq̂d)(Æb
 � ( dk� q)b( dk � q)
)℄: (B6)The �rst term only 
ontributes an uninteresting 
onstantand 
an be disregarded. For the remaining two termsintegration over d3p eliminates one of the two Æ-fun
tionsand leads toh�ab(k; �)��
d(k0; �)i =Æ(k� k0) a�124(2�)8 Z d3q B2(q)B2(jk� qj)��(Æa
 � q̂aq̂
)(Æbd � d(k� q)b d(k� q)d)+(Æad � q̂aq̂d)(Æb
 � d(k� q)b d(k� q)
)� : (B7)Clearly, the 
orrelator of � and thus also the one of � issymmetri
 in k and k0 and hen
e also under the ex
hangeof the �rst and the se
ond pair of indi
es. In addition itis symmetri
 in the �rst and the se
ond as well as in thethird and the fourth index. The most general isotropi
9



transverse tra
eless fourth rank tensor whi
h obeys thesesymmetries has the tensorial stru
tureMijlm(k) = ÆilÆjm + ÆimÆjl � ÆijÆlm + k�2(Æijklkm +Ælmkikj � Æimkjkl � Æilkjkm � Æjlkikm�Æjmkikl) + k�4kikjklkm : (B8)We 
ould not �nd a straight forward derivation of thisresult in a textbook on multi-linear algebra where it a
-tually belongs, but it 
an be found, e.g. in [24℄.We 
an hen
e seth�ij(k; �)��lm(k0; �)i = f(k; �)2=a12MijlmÆ(k � k0)withh�ij(k; �)��ij (k0; �)i = 4a8 f(k; �)2Æ(k� k0); (B9)To determine the 
orrelator of � it is therefore suÆ
ientto 
al
ulate its tra
e. With PijabP ij
d = PabijP ij
d = Pab
d,(for the last identity we simply use that proje
tors areidem-potent), we haveh�ij(k; �)��ij(k0; �)i = Pab
dh�ab(k; �)��
d(k0; �)i :(B10)A somewhat tedious but straight forward 
omputationgivesPab
d[(Æa
 � q̂aq̂
)(Æbd � ( dk� q)b( dk� q)d)+ (Æad � q̂aq̂d)(Æb
 � ( dk� q)b( dk � q)
)℄ =1 + (k̂�(dk�q))2 + (k̂�q̂)2 + (k̂�q̂)2(k̂�( dk�q))2 : (B11)Setting 
 = k̂ � q̂ and � = k̂ � ( dk� q), and using the fa
tthat the se
ond term transforms into the third one underthe transformation q! k� q, we �nally obtainh�ij(k; �)��ij (k0; �)i = a�84(2�)8 Æ(k� k) �Z d3qB2(q)B2(jk� qj)(1 + 2
2 + 
2�2) ; (B12)whi
h leads to the result for f(k) given in Eq. (10).APPENDIX C: GRAVITATIONAL WAVEPRODUCTIONThe equation for gravity wave produ
tion due to tensortype anisotropi
 stresses is�hij + 2 _aa _hij + k2hij = 8�G�ij : (C1)For ea
h mode we therefore have an equation of the form�h+ 2 _aa _h+ k2h = s(k; �) ; (C2)

where s(k; �) = 8�Ga2 f(k; �). The fun
tion f only dependson � for n > �3=2 via the damping 
uto� kd(�). Interms of the dimensionless variable x = k� equation (C2)redu
es to h00 + 2�xh0 + h = s(k; �)k�2 ; (C3)where � = 1 in the radiation dominated era, and � = 2in the matter dominated era. The homogeneous solu-tions of Eq. (C3) are the spheri
al Bessel fun
tions j0 ; y0in the radiation dominated era, and j1=x; y1=x in thematter dominated era respe
tively. We assume that themagneti
 �elds were 
reated in the radiation dominatedepo
h, at redshift zin. Using the Wronskian method, thegeneral solution of Eq. (C3) whi
h vanishes at zin is givenby h(x) = 
1(x)g1(x) + 
2(x)g2(x) ; (C4)where g1; g2 are the above mentioned homogeneous solu-tions and
1(x) = �k�2 Z xxin s(x0)g2(x0)=W (x0)dx0
2(x) = k�2 Z xxin s(x0)g1(x0)=W (x0)dx0 ;W = g1g02�g01g2 is the Wronskian determinant of the ho-mogeneous solution. Inside the horizon the homogeneoussolutions g1 and g2 begin to os
illate. The 
ontributionto the integral from times where the s
ale under 
onsid-eration is sub-horizon is hen
e negligible. Furthermore,sin
e the gravity wave energy is growing with wave num-ber (it is proportional to k3f2), our limit will 
ome fromlarge wave numbers, small s
ales, whi
h enter the horizonbefore de
oupling. Let us thus solve Eq. (C3) expli
itlyin the radiation dominated regime, � < �eq , for a wavenumber whi
h enters the horizon in the radiation era,k�eq > 1, and in the 
ase where f is not time depen-dent (n < �3=2). We �rst noti
e that the WronskianW (j0; y0) = 1=x2. Using the radiation approximationof Eq. (2) for the s
ale fa
tor, a = H0�p
rad we havek�2s(x)W (x) = 8�Gf(k)H20
rad :Sin
e y0 diverges at small x the term 
1 
learly domi-nates. After horizon 
rossing we haveh(x) ' 
1(1)j0(x) = 
1(1)sinxx :Performing the integral 
1(1), we �ndh(x) ' �8�Gf(k)H20
rad sinxx log(xin) ; (C5)for x > 1 and � < �eq ' p
rad=H0. We have 
om-pared this formula with the numeri
al solution and, as10



expe
ted, found that it is a very reasonable approxima-tion (within less than 10% of the numeri
al result).After horizon 
rossing, the gravity waves thus prop-agate freely, and their energy just s
ales like radiationenergy, so that for k�eq > 1, using Eq. (19)d
G(k)d log(k) ' d�G(k)�rad d log(k)
rad = k3 _h2a2�rad(2�)6G
rad : (C6)During the radiation era, on sub-horizon s
ales_h ' 8�Gf(k)�H20
rad log(xin) 
os(x) and a2�rad = 38�G �1��2so thatd
G(k)d log(k) = 4k3f(k)2(8�G)2 log2(xin) 
os2(x)H40
rad3(2�)5' 12k3f(k)2 log2(xin)�2

rad(2�)5 : (C7)Sin
e the ratio between the gravity wave energy densityand the radiation energy density is time independent, thisformula is valid also in the matter era. �
 = 3H20=(8�G)denotes the 
riti
al density today.
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