
Gravitational wave prodution: A strong onstraint on primordial magneti �eldsChiara Caprini1;2 and Ruth Durrer11D�epartement de Physique Th�eorique, Universit�e de Gen�eve, 24 quai Ernest Ansermet, CH-1211 Gen�eve 4, Switzerland2Dipartimento di �sia, Universit�a degli Studi di Parma, Paro Area delle Sienze 7A, 43100 Parma, ItalyWe ompute the gravity waves indued by anisotropi stresses of stohasti primordial magneti�elds. The nuleosynthesis bound on gravity waves is then used to derive a limit on the magneti�eld amplitude as funtion of the spetral index. The obtained limits are extraordinarily strong:If the primordial magneti �eld is produed by a ausal proess, leading to a spetral index n � 2on super horizon sales, galati magneti �elds produed at the eletroweak phase transition orearlier have to be weaker than B� � 10�27Gauss! If they are indued during an inationary phase(reheating temperature T � 1015GeV) with a spetral index n � 0, the magneti �eld has to beweaker than B� � 10�39Gauss! Only very red magneti �eld spetra, n � �3 are not stronglyonstrained. We also �nd that a onsiderable amount of the magneti �eld energy is onverted intogravity waves.The gravity wave limit derived in this work rules out most of the proposed proesses for primordialseeds for the large sale magneti �elds observed in galaxies and lusters.PACS Numbers : 98.80.Cq, 98.70.V, 98.80.HwI. INTRODUCTIONOur galaxy, like most other spiral galaxies, is perme-ated by a magneti �eld of the order of B � 10�6Gauss.Reently, similar magneti �elds have also been observedin lusters of galaxies on sales of up to � � 0:1Mp [1,2℄.There is an ongoing debate whether suh �elds an beprodued by harge separation proesses during galaxyand luster formation [3℄ or whether primordial seed�elds are needed, whih have then been ampli�ed by sim-ple adiabati ontration or by a dynamo mehanism. Inthe �rst ase, seed �elds of B � 10�9Gauss are neededwhile in the seond ase B � 10�20Gauss [3℄ or even10�30Gauss in a universe with low mass density [4℄ suf-�e. Several mehanisms have been proposed for the ori-gin of suh seed �elds, ranging from inationary produ-tion of magneti �elds [5{7℄ to osmologial phase tran-sitions [8℄.Primordial magneti �elds have been onstrained inthe past in various ways mainly by using their e�et onanisotropies in the osmi mirowave bakground [9{14℄.In these works onstant magneti �elds and stohasti�elds with red spetra n � �3 [14℄ have been onsid-ered and the limits obtained where of the order of afew�10�9Gauss. A simple order of magnitude estimateshows that, from the CMB alone, one annot expetmuh stronger onstraints of magneti �elds: The energydensity in a magneti �eld is
B = B28�� ' 10�5
(B=10�8Gauss)2 ; (1)where 
 is the density parameter in photons. Wenaively expet a magneti �eld of 10�8Gauss to indueperturbations in the CMB on the order of 10�5, whihare just on the level of the observed CMB anisotropies. Itis thus expeted that CMB anisotropies annot onstrainprimordial magneti �elds to better than a few tenths ofthis amplitude.

In this work we onstrain magneti �elds by the gravitywaves whih they indue lassially, via the anisotropistresses in their energy momentum tensor. These grav-ity waves lead to muh stronger onstraints than CMBanisotropies, espeially for spetral indies n > �3. Thisomes from the fat that the spetrum of the gravity waveenergy density indued by stohasti magneti �elds is al-ways blue (exept for n = �3 where it is sale invariant)and thus leads to stronger onstraints on small salesthan on the large sales probed by CMB anisotropies.The e�ets of a onstant magneti �eld on gravity waveevolution and prodution have been studied in [16℄. Herewe onentrate on the prodution of gravity waves, butonsider a stohasti magneti �eld.The remainder of this paper is organized as follows:In the next setion we de�ne the initial magneti �eldspetrum and its evolution in time, and we determine themagneti stress tensor whih soures gravity waves. InSetion 3 we alulate the indued gravity wave spetrumand estimate the e�et of bak-reation. In Setion 4we derive limits on the primordial magneti �eld usingthe nuleosynthesis limit on gravity waves and disussour onlusions. In order not to loose the ow of thearguments, several tehnial derivations are deferred tothree appendies.We use onformal time whih we denote by �; the salefator is a(�). Derivatives w.r.t onformal time are de-noted by an over-dot, dad� = _a. We normalize the salefator today to a(�0) = 1. The index 0 on a time depen-dent variable always indiates today. We assume a spa-tially at universe with vanishing osmologial onstantthroughout. Negleting a possible osmologial onstantmodi�es the evolution of the sale fator only at very latetimes, z < 2 and is therefore irrelevant for the results ofthis paper. We set the speed of light  = 1 so that timesand length sales an be given in units of se, m or Mp,whatever is onvenient. With our onventions, the sale1



fator is given bya(�) = H0�(H0�4 +p
rad) ; (2)where H0 = (3:086� 1017se)�1h0 is the Hubble param-eter, 0:5 < h0 < 0:8 and 
rad = 4:2 � 10�5h�20 is theradiation density parameter (photons and three types ofmassless neutrinos).Note that the sale fator has no units, but onformaltime and omoving distane do. The normalization ofa implies that omoving distane beomes physial dis-tane today. The onformal time � is the omoving sizeof the horizon. The relation between � and redshift ortemperature is simplyz(�) = 1a(�) � 1 ;T (�) = z(�)T0 ' z(�)2:4� 10�4eV : (3)The omoving time of equal matter and radiation, de�nedby a(�eq)�3 = 
rada(�eq)�4 or zeq + 1 = 
�1rad, is�eq = 2(p2� 1)p
radH�10 � 1:7� 1015se: (4)Greek indies run from 0 to 3, Latin ones from 1 to 3.Spatial (3d) vetors are denoted in bold.II. PRIMORDIAL STOCHASTIC MAGNETICFIELDSIn this setion we losely follow Ref. [14℄. During theevolution of the universe, the ondutivity of the inter-galati medium is e�etively in�nite. We an deouplethe time evolution of the magneti �eld from its spatialstruture: B sales like B2(�;x) = B20(x)=a4 on suÆ-iently large sales. (In our oordinate basis Bi / 1=aand Bi / a�3 as an be derived easily from Maxwell'sequations in urved spaetime with vanishing eletri�eld, see e.g. [17℄). On smaller sales, the interationof the magneti �eld with the osmi plasma beomesimportant, leading mainly to two e�ets: on interme-diate sales, the �eld osillates like os(vAk�), wherevA = (B2=(4�(� + p)))1=2 is the Alfv�en veloity, andon very small sales, the �eld is exponentially dampeddue to shear visosity [18{20℄. We will take into aountthe time dependent damping sale as a time dependentuto� kd(�) in the spetrum of B. As we shall see, ouronstraints ome from small sales where the spetrumis exponentially damped and osillations an be ignored.We therefore disregard them in what follows. The ex-pressions for kd(�) are derived in Appendix A. The onlyresult of this appendix relevant here is that the dampingsale 1=kd(�) grows like a positive power � > 0 of � and isalways smaller than the horizon sale, kd(�) / 1=�� andkd(�) > 1=�. The reader not interested in the details of

damping and on�dent with this relatively obvious result,an skip Appendix A.We model B0(x) as a statistially homogeneous andisotropi random �eld. The transversal nature of B thenleads tohBi(k)B�j(q)i = Æ3(k� q)(Æij � k̂ik̂j)B2(k) : (5)We use the Fourier transform onventionsBj(k) = Z d3x exp(ix � k)Bj0(x) ;Bj0(x) = 1(2�)3 Z d3k exp(�ix � k)Bj(k) ;and k̂ = k=k, k = pPi(ki)2; k is the wave vetor to-day whih is also the o-moving wave vetor. Its unit isinverse length whih we will express in se�1.We want to derive a limit on the amplitude of magneti�elds on the sale � � 0:1Mp generated by a primordialproess whih took plae before � = 0:1Mp � 1013seorresponding to T � 1keV. Hene we are mainly in-terested in magneti �elds generated on super horizonsales. As we shall see, our limits only apply for �eldsgenerated before nuleosynthesis, T > Tnu ' 0:1MeV.The main examples we have in mind are inationary gen-eration of magneti �elds [5,6℄, magneti �elds generatedin string osmology [7℄ and magneti �elds generated dur-ing the eletroweak phase transition [8℄.In the �rst two examples, a simple power law magneti�eld spetrum with upper uto� k ' ��1in is generated.The onformal time �in marks the end of ination or thestring sale respetively.Eletroweak magneti �eld prodution is ausal, lead-ing mainly to �elds on sales smaller than the size ofthe horizon at the phase transition, �ew ' 4 � 104se' 1015m ' 3� 10�4p. These sub-horizon �elds, whihannot propagate into larger sales during the linear evo-lution disussed in this paper, and whih are essentiallydamped by visosity, will be negleted in this paper. Mo-tivated from ination, we simply impose an initial ut-o� sale k(�in) = 1=�in. Allowing for more small salepower, as it is ertainly present initially in ausal meha-nisms, only strengthens our result whih atually omesfrom the smallest sales not a�eted by damping.If B is generated by a ausal mehanism, it is unor-related on super horizon sales,hBi(x; �)Bj(x0; �)i = 0 for jx� x0j > 2� : (6)Here it is important, that the universe is in a stageof standard Friedman expansion, so that the omovingausal horizon size is about �. During an inationaryphase, the ausal horizon diverges and our subsequentargument does not apply. In this somewhat misleadingsense, one alls inationary perturbations 'a-ausal'.Aording to Eq. (6), hBi(x; �)Bj(x0; �)i is a funtionwith ompat support and hene its Fourier transform isanalyti. The funtion2



hBi(k)B�j(k)i � (Æij � k̂ik̂j)B2(k) (7)is analyti in k. If we assume also that B2(k) an beapproximated by a simple power law, we must onludethat B2(k) / kn, where n � 2 is a even integer. (Awhite noise spetrum, n = 0 does not work beause ofthe transversality ondition whih has led to the non-analyti pre-fator Æij � k̂ik̂j .) By ausality, there anbe no deviations from this law on sales larger than thehorizon size at formation, �in. As explained above, weneglet �elds on smaller sales by a simple uto�.We assume that B0 is a Gaussian random �eld. Al-though this is not the most general ase, it greatly sim-pli�es alulations and gives us a good idea of what toexpet in more general situations.Using Wik's theorem for Gaussian �elds we an al-ulate the orrelator of the tensor ontribution to theanisotropi stresses indued by the magneti �eld, whihwe denote by �ij . One �nds (see Appendix B)h�ij(k; �)��lm(k0; �)i = j�(k; �)j2=a12MijlmÆ(k� k0)h�ij(k; �)��ij (k0; �)i = 4a8 f2(k; �)Æ(k � k0); (8)whereMijlm(k) � ÆilÆjm + ÆimÆjl � ÆijÆlm + k�2(Æijklkm +Ælmkikj � Æilkjkm � Æimklkj � Æjlkikm�Æjmklki) + k�4kikjklkm ; (9)andf(k)2 = 116(2�)8 Z d3qB2(q)B2(jk� qj)(1 + 22 + 2�2) ;(10)with  = k̂ � q̂ and � = k̂ � dk� q. For this result wemade use of statistial isotropy, whih implies that thetwo spin degrees of freedom of �ij have the same averageamplitude. More expliitly: in a oordinate system wherek is parallel to the z-axis, �ij has the form(�ij) = 0� �+ �� 0�� ��+ 00 0 0 1A ;together with Eq. (8), statistial isotropy then giveshj�+j2i = hj��j2i = 1a4 f2 : (11)To ontinue, we have to speify B2(k). For simpliitywe assume a simple power law with uto� k whih andepend on time. As all sales smaller than 1=kd(�) aredamped, learly we have to require k(�) � kd(�). Moti-vated by inationary magneti �eld prodution we hoosek(�in) � 1=�in, the primordial magneti �eld is oherentup to the horizon size at formation. For magneti �elds

produed during the eletroweak phase transition, the'oherene sale' is substantially smaller [21℄, k(�in) �1=�in whih would strengthen our limit as we shall see.Sine it is unphysial to assume k(�in) < 1=�in, ourassumption is onservative. We setk(�) = min(1=�in; kd(�)) :It is important to keep in mind, that this uto� sale isalways smaller than the horizon sale.We now an parameterize B2 byB2(k) = ( (2�)52 (�=p2)n+3�[n+32 ℄ B2�kn for k < k0 otherwise. (12)The normalization is suh thatB2� = 1V Z d3rhB0(x)B0(x+ r)i exp(� r22�2 ) ; (13)where V = R d3r exp(�r2=2�2) = �3(2�)3=2 is the nor-malization volume. (We have assumed that the ut-o� sale is smaller than �.) We will �nally �x � =0:1h�1Mp, the largest sale on whih oherent magneti�elds have been observed; but the saling of our resultswith � will remain obvious.The energy density in the magneti �eld at some ar-bitrary sale ` is / B2̀ / B2(k)k3jk=1=` / `�(n+3). Inorder not to over-produe long range oherent �elds, wemust require n � �3. For n = �3 we obtain a saleinvariant magneti �eld energy spetrum.Using Eqs. (12) and (10) we an alulate f . The inte-gral annot be omputed analytially, but the followingresult is a good approximation for all wave numbers k [14℄f2(k; �) ' A�� k(�)2n+3 for n � �3=2k2n+3 for n � �3=2 : (14)withA = (2�)316 (�=p2)2n+6B4��2[n+32 ℄For n > �3=2, the gravity wave soure � is white noise,independent of k. Only the amplitude, whih is propor-tional to (�k)2n, depends on the spetral index. Thisis due to the fat that the integral (10) is dominated bythe ontribution from the smallest sale k�1 . The in-dued gravity wave spetrum will therefore be a whitenoise spetrum for all n > �3=2.III. GRAVITY WAVES FROM MAGNETICFIELDSWe now proeed to alulate the gravity waves induedby the magneti �eld stress tensor. The metri elementof the perturbed Friedman universe is given byds2 = a2(�)[d�2 � (Æij + 2hij)dxidxj ℄ ;3



where hii = 0 and hjiki = 0 for tensor perturbations. Themagneti �eld soures the evolution of hij through�hij + 2 _aa _hij + k2hij = 8�G�ij : (15)�ij is a random variable, but its time evolution is deter-ministi, it evolves in time simply by redshifting and bythe evolution of the uto�. Eah omponent is given by��(k; �) = 1a2 f(k; �)~��(k) ;where ~��(k) is a time independent random variable withpower spetrum hj~��(k)j2i = 1. Therefore, also eahomponent of the indued gravity wave is given byh�(k; �) = h(k; �)~��(k) ;where h(k; �) is a solution of�h+ 2 _aa _h+ k2h = 8�Ga2(�)f(k; �) : (16)The gravity wave power spetrum is then given byh _hij(k; �) _h�ij(k0; �)i = 4_h2(k; �)Æ(k � k0) : (17)In real spae ,the energy density in gravity waves is�G = h _hij _hiji16�Ga2 :The fator 1=a2 omes from the fat that _h denotes thederivative w.r.t. onformal time. Fourier transformingthis relation, we obtain with Eq. (17)�G = Z k0 dkk d�G(k)d log(k) ; (18)with d�G(k)d log(k) = k3 _h2a2(2�)6Gsuh thatd
G(k)d log(k) � d�G(k)� d log(k) = k3 _h2a2�(2�)6G ; (19)where � = 3H20=(8�G) denotes the ritial density to-day. In Appendix C we solve Eq. (16) for n < �3=2, whenf is time independent, and we show that for wave num-bers whih enter the horizon in the radiation dominatedera, the density parameter in gravity waves produed bythe magneti �eld an be expressed asd
G(k)d log(k) ' 12k3f(k)2 log2(xin)�2
rad(2�)5 ; (20)for n � �3=2 :

Fourier transforming the expression for the magneti �eldenergy �B = hB2(x)i=(8�), we obtain the magneti �elddensity parameter at time �,d
B(k)d log(k) = B2�8�� (k�)n+32(n+3)=2�(n+32 ) (21)
B(�) = 
B(k(�)) = Z k(�)0 dkk d
B(k)d log(k)= B2�8�� (k�)n+32(n+5)=2�(n+52 ) : (22)Note that 
B may well be onsiderable on small sales,sine this is the magneti �eld energy at very early timeswhih an be damped and transformed, e.g. into radi-ation later. But of ourse, for our perturbative alu-lation to apply, we must require d
B(k)d log(k) < 
rad duringthe radiation dominated era. Using Eqs. (21,22) and theresult (14) for f , we obtain from Eq. (20)d
G(k)d log(k) ' (d
B(k)d log(k) )2
rad 24 log2(xin) ; (23)for � 3 < n < �3=2
G = Z 1=�in0 dkk d
G(k)d log(k)' 
2B(�in)
rad 12(n+ 3) ; (24)for � 3 < n < �3=2 :In the integrated formula for 
G we have negleted thelogarithmi dependene log2(xin).If n > �3=2 the result hanges sine f now dependson time via the uto� k(�) = min(1=�in; kd(�)). Clearly,kd(�in) > 1=�in by ausality. We de�ne the time �vis tobe the moment when the damping sale beomes smallerthan �in, kd(�vis) = 1=�in. From that time on, thefuntion f deays like a power law,f2(k; �) / k2n+3d / f2(k; �in)(�vis=�)�(2n+3) ;where � is a positive power desribing the growth ofthe visosity damping sale. Hene, the soure term ofEq. (16) starts to deay faster than 1=a2, and additionalgravity wave prodution after �vis is sub-dominant. Weneglet it in our attempt to derive an upper limit forprimordial magneti �elds. For n > �3=2, the grav-ity wave solution given in Appendix C, Eq. (C5) is thensimply modi�ed by � log(xin) ! log(xvis=xin), sinethe integral of the gravity wave soure term only hasto extend from xin to xvis. Taking also into aountthat up to �vis the uto� sale is k(�) = 1=�in, henef2(k; �) / k2n+3 = 1=�2n+3in , we obtaind
G(k)d log(k) ' �d
B(k)d log(k)�2 (k�in)�3�2n
rad 24 log2(xvis=xin);4



for n > �3=2 (25)
G ' 
2B(�in)
rad 8(n+ 3)2 log2(�vis=�in) ; (26)for n > �3=2 :In Appendix A, we estimate for the two examples of in-ation, Tin � 1015GeV, �in � 8� 10�9se and the ele-troweak phase transition, Tew � 200GeV, �in = �ew �4� 104se,�vis=�in ' 109 for ination �in = 8� 10�9se;�vis=�ew >� 3000 for ew. trans. �ew � 4� 104se :Up to logarithms, the �nal formula for gravity wave pro-dution is nearly the same for all values of the spetralindex (f. Eqs. (26) and (24)).In these formulas bak-reation, namely the dereaseof magneti �eld energy due to the emission of grav-ity waves, is not inluded. Therefore Eqs. (23,24) and(25,26) are reasonable approximations only if 
G <� 
B .In the opposite ase, whih is realized whenever
B(�in) >� 
BG(n)� ( 
rad12(n+3) for n < �3=2
rad8(n+3)2 log2(�vis=�in) for n > �3=2= 8<: 3:3�10�6h�20(n+3) for n < �3=25�10�6h�20(n+3)2 log2(�vis=�in) for n > �3=2 ; (27)the magneti �eld energy is fully onverted into grav-ity waves. Note, however, that the value 
BG(n) is ingeneral not very muh smaller than 
rad, whih is anintrinsi limit on 
B for our perturbative approah.In Fig. 1 the values 
G and 
B(�in) as funtions of thespetral index are shown for two di�erent hoies of thereation time for the primordial magneti �eld: the ele-troweak transition, �in = �ew � 4� 104se and inationwith �in � 8 � 10�9se, for a magneti �eld amplitudeB� = 10�20 Gauss. They are ompared with the nu-leosynthesis limit, whih omes from the fat that anadditional energy density may not hange the expansionlaw during nuleosynthesis in a way whih would spoilthe agreement of the alulated Helium abundane withthe observed value. The maximum allowed additionalenergy density is given by [22℄
limh20 = 1:12� 10�6 : (28)

FIG. 1. We show 
Gh20 and 
B(�in)h20 as funtions of thespetral index n for two di�erent times of primordial magneti�eld reation: the eletroweak transition ( 
Gh20 dash-dotted,blue and 
B(�in)h20 short-dashed, red), and ination ( 
Gh2dotted, blue and 
B(�in)h20 long-dashed, red) for a �duial�eld strength B� = 10�20Gauss at � = 0:1Mp. The nu-leosynthesis limit, 
limh20 is also indiated. (The log- termshave been negleted.) Clearly, the regimes with 
B > 1 or
G > 1 are not physial and are just shown for illustration.We have also shown 
B(�nu)h2, the magneti �eld densitywhih is simply ut o� at the nuleosynthesis damping sale(fat solid line).From Fig. 1 we see that 
G as alulated above domi-nates over 
B(�in) for all spetral indies n > �2 in theinationary ase and n > 0 for eletroweak magneti �eldprodution, for an amplitude of B� = 10�20Gauss. Thisis due to the fat that we have negleted bak-reationwhih leads to a loss of magneti �eld energy. Clearly,the magneti �eld annot onvert more than all its en-ergy into gravity waves. However, if our formula for 
Gleads to 
G > 
B(�in), it does atually onvert most ofits energy into gravity waves, before it is dissipated byplasma visosity, sine gravity wave prodution happensbefore and at horizon rossing, while visosity dampingis ative only on sales whih are well inside the horizon.We an take into aount bak-reation by simply setting
G � 
B(�in) when our alulation gives 
G > 
B(�in).We shall use this approximation for 
G in what follows.Fig. 1 also shows that, sine the value of the magneti�eld density parameter at whih onversion into gravitywaves is quasi omplete is so lose to the nuleosynthesislimit, 
BG(n)h20 � 1:12� 10�6 � 
limh20, the two urves
Gh20 and 
B(�in)h20 ross lose to 
limh20. This meansthat the gravity wave limit for magneti �elds is verylose to the limit obtained by setting 
G = 
B(�in).Let us disuss the problem of bak-reation in more de-tail. Even if 
G < 
B(�in), as soon as d
G(k)d log(k) > d
B(k)d log(k)5



for a given sale k�1, we an no longer neglet bak-reation for this sale. The spetrum of 
G isd
G(k)d log(k) / � k2n+6; for n � �3=2k3; for n � �3=2;while d
B(k)d log(k) / kn+3. Hene for �3 < n < 0, the gravitywave spetrum is bluer than the magneti �eld spetrum.Sine there is no infrared uto�, at suÆiently low valuesof k we will always have d
G(k)d log(k) < d
B(k)d log(k) and bak rea-tion is unimportant at low k. The value klim, below whihthis is the ase, an be determined from Eqs. (21,23) and(25). We �ndklim� �log2(klim�in)� 1n+3 ' � 
rad24
�� 1n+3 p2� [1026(10�20Gauss=B�)2℄ 1n+3p2; (29)for � 3 < n < �3=2klim�in ' 12  p8
rad24
in log2(�vis=�in)!�1n� �2� 104(10�9Gauss=Bin)2log2(�vis=�in) ��1n ; (30)for � 3=2 < n < 0;where 
� = B2�=(8��) ' �d
B(k)d log(k)�k=1=� and
in = 
�(�in=�)n+3 ' �d
B(k)d log(k)�k=1=�in ;B2in = B2�(�=�in)n+3.If klim > 1=�in, e.g. if the square braket in Eq. (30)is larger than unity, bak-reation is never important.For n = 0 the magneti �eld and gravity wave energydensities have the same spetral index and the ondi-tion that gravity wave bak-reation beomes importantis sale independent. In this ase it simply reads
in � 
radp824 log2(�vis=�in) : (31)The situation is di�erent for n > 0. Then the gravitywave spetrum is less blue than the magneti �eld spe-trum and bak reation is always important at suÆientlylow k, large sales.When bak reation is important, it leads to damp-ing of the primordial magneti �elds on large sales andwill atually damp the �eld down to values for whihbak-reation is unimportant. This an be seen as fol-lows: gravity wave prodution takes plae until �ij(k),the tensor omponent of the magneti �eld stress tensor,

vanishes. But then f2(k) = 0 whih implies aording toEq. (10)B2(q)B2(jk� qj) = 0 for all 0 � q � k:For n < 0 the quadrati nature of the oupling of B togravity waves atually damps the magneti �eld energyat least on all wave numbers q > klim=2.For n > 0, bak-reation redues �ij(k) /R d3qB2(q)B2(jk � qj) for small enough values of k. Inthe limit k ! 0, this indiates that bak-reation dampsthe magneti �eld on all sales until it beomes unim-portant. It is diÆult to deide without a detailed alu-lation how the magneti �eld spetrum will atually bea�eted, but it seems reasonable to assume that bak-reation will alter it until n ' 0 and the amplitude untilinequality (31) is violated. We an therefore assume thatin late time magneti �elds inequality (31) is always vio-lated if the magneti �eld spetral index is n >� 0.We �nd this a very important result, whih an besummarized as follows: Magneti �elds on super-horizonsale with a density whih is suÆiently lose to the ra-diation density are strongly damped into gravity waveswhen they enter the horizon. Note also that 'suÆientlylose' an even mean several orders of magnitude smallersine log2(k�in) an easily beome of order 100 or more.Furthermore, primordial magneti �elds produed on su-per horizon sales have their spetral index hanged bygravity wave prodution to n <� 0 one they enter thehorizon.During the matter dominated era gravity wave produ-tion is somewhat less eÆient [14℄; and sine the salesof interest for us are sub-horizon in the matter era we donot disuss it here.IV. LIMITS AND CONCLUSIONSThe �rst limit for primordial magneti �elds produedbefore nuleosynthesis is simply that the energy densitywhih they ontribute may not hange the expansion lawduring nuleosynthesis. As already mentioned, this on-dition implies [22℄
B(�nu)h20 � 1:12� 10�6 = 
limh20 :Here we have disregarded the loss of magneti �eld energyinto gravity waves whih will, as we shall see, strengthenthe limit onsiderably. From Eq. (22) we have
B(�nu) = B2�8�� (k(�nu)�)n+32n+52 �(n+52 )' 4:5h�20 �10�13(5:9�106)n2n+52 �(n+52 ) � B�10�20G�2� �1013se�n+3where we have insertedkd(�nu) ' p2�T
b�=(�3nump
radH20 ) ' 105=�nu6



' 6 � 10�7se�1 (for details see Appendix A andRefs. [19,14,20℄). The density parameter 
B(�nu) as afuntion of the spetral index n is shown in Fig. 1.Together with the above onstraint, this gives alreadyan interesting limit on primordial magneti �elds withspetral indies n > �2, as shown in Fig. 2 (solid line).For ausal mehanisms of seed �eld prodution, n � 2, iteven implies B� < 10�22Gauss.

FIG. 2. We show the nuleosynthesis limit on B� (solidline) as funtion of the spetral index, n together with thelimit from gravity waves if the primordial �eld is produed atthe eletroweak transition (short-dashed) or during ination(long-dashed) for � = 0:1h�1Mp' 1013se.Nevertheless, the limit implied from the produtionof gravity waves is more stringent, sine the gravitywaves have been produed at very early times, whenthe magneti �eld damping sale was muh smaller than1=kd(�nu) � 1:7 � 106se. The prodution of gravitywaves has prevented the magneti �eld energy from be-ing lost by visosity damping, sine gravity waves do notinterat with matter in any substantial way.Setting 
G = 
B(�in) whenever the result ofEqs. (24,26) is larger than this limit, whih is the simplestway to aount for bak-reation, the ondition
Gh20 < 1:12� 10�6 = 
limh20 (32)yields the onstraint for primordial magneti �elds re-ated at �in. For spetral indiesn > �3 +r 
rad8
lim � �1 ;the value for 
G inferred from Eq. (26) beomes largerthan 
B(�in) at the limiting value 
lim imposed from nu-leosynthesis (in this approximation we have negletedthe fator log2(�vis=�in), whih an be onsiderable!).Then the magneti �eld damping due to gravity wave

produtions is very important. But also for smaller val-ues of the spetral index, n > �3, we have 
G � 
B(�in)for 
G � 
lim and there is still a onsiderable amount ofmagneti �eld damping due to gravity wave prodution.The results for primordial magneti �elds produed atination and at the eletroweak sale are shown in Fig. 2(dashed lines). As an be seen for the two examples, pri-mordial magneti �elds produed before nuleosynthesisare very strongly onstrained. For all values of the spe-tral index, the following expression is a good approxima-tion for the limit obtained:B�=10�9Gauss < 700h0 � (�in=�)(n+3)=2N (n) (33)where N (n) �s2n+52 ��n+ 52 � � 1 :This nuleosynthesis bound beomes stronger for smalleruto� sales, larger k, aording to Eq. (33) it sales like(k�)�(n+3)=2. (Remember that we have set k = 1=�in.)If the seed �eld is produed during an inationaryphase at GUT sale temperatures, where onformal in-variane an be broken e.g. by the presene of a dilaton,the indued �elds must be smaller thanB� � 10�20Gaussfor n > �2. If seed �elds are produed after ination,their spetrum is onstrained by ausality. Deviationfrom a power law with n � 2 an only be produed onsub-horizon sales, k > 1=�in. Therefore our limit de-rived by setting B(k) = 0 on sub-horizon sales, k�in > 1,is the most onservative hoie onsistent with ausality.Mehanisms whih still an produe signi�ant seed�elds are either 'ordinary' ination, if the spetral indexn <� �2 or a late inationary phase at the eletroweaksale (or even later) where a seed �eld with n <� 0 anhave amplitudes of B� � 10�20Gauss.We also have found that magneti �elds whih on-tribute an energy density lose to the nuleosynthesisbound, loose a onsiderable amount (if not all) of theirenergy into gravity waves, whih might be detetable.In fat, the spae born interferometer approved by theEuropean Spae Ageny and NASA, the Large Interfer-ometer Spae Antenna (LISA) whih has its most sen-sitive regime where it an detet 
Gh20 � 10�11 around10�3Hz� 1=�weak [22℄ will either detet or rule out allmagneti seed �elds with spetral index n >� �0:5 pro-dued around or before the eletroweak phase transition.If LISA does not detet a gravity wave bakground, theonstraint analogous to Eq. (33) for �in � 4 � 104seyields B� < 10�20Gauss for all indies n > �0:5for all mehanisms produing seed �elds before or at theeletroweak phase transition.We onlude that, most probably, magneti seed �eldshave to be produed relatively late, or after nuleosyn-thesis to evade the disussed bounds. Our gravity wave7



bound is not relevant for magneti �elds whih are pro-dued on sub-horizon sales. But for � >� 0:1Mp toenter the horizon, this requires a temperature of reationT < 1keV. The only late time mehanism found so farwhih ould lead to seed �elds is reombination, wherelarge sale �elds of the order of B � 10�20 Gauss anbe indued by magneto-hydrodynami e�ets, and thedi�erene in the visosity of eletrons and ions [23℄, aharge separation mehanism. Our work strongly on-strains proesses of quantum partile prodution (duringe.g. an inationary phase) as origin for the observedmagneti �elds and favors more onventional proesseslike harge separation in the late universe.Aknowledgment: We thank Pedro Ferreira,Mihele Maggiore and Roy Maartens for helpful disus-sions. This work is supported by the Swiss NSF.
APPENDIX A: DAMPING OF MAGNETICFIELDS BY VISCOSITYIn this appendix we determine the uto� funtionkd(�). We use the results found in [19,18℄ and [20℄.We split the magneti �eld into a high frequeny and alow frequeny omponent, separated by the Alfv�en sale,�A = vA�, where the Alfv�en veloityv2A = hB2i4�(�r + pr)depends on the low frequeny omponent: hB2Ai =hB0i(x)Bi0(x)ij�A , vA � 4 � 10�4 � (BA=10�9Gauss)[14℄. The amplitude of the high frequeny omponentthen obeys a damped harmoni osillator equation, withdamping oeÆient, D(�), depending on time and on themean free path of the di�using partiles giving rise tovisosity [19℄. In the osillatory regime, we de�ne thedamping sale at eah time � to be the sale at whihone e-fold of damping has ourred: R �0 D2 d� = 1. Thedamping term D is given by D = k2�ol=a(�), where�ol is the mean free path of the partile speies withthe highest visosity whih is still suÆiently stronglyoupled to the magneti �eld. Long wave modes with1=k > vA� are not signi�antly damped. We now deter-mine the damping sale as a funtion of time. To deter-mine whether a given mode with k > kd(�) is e�etivelydamped one has to deide whether it is in the osillatoryregime, !0 = kvA > D = k2�ol=a(�) where dampingreally has time to our or in the 'over-damped' regimek < vAa(�)=2�ol where amplitudes remain approxima-tively onstant. With vA this depends on the magneti�eld under onsideration.

Let us now determine the damping sale. Before neu-trino deoupling at T >� 1MeV orresponding to � <�1010se, damping is due to both photon and neutrinovisosity. The mean free path of photons is�ol; ' 1�Tne ' a3(1:5� 1020se) ;where �T = 6:65�10�25m2 is the ross setion of Thom-son sattering. For neutrinos, we take into aount sat-tering with leptons as the priniple sattering proessgiving rise to visosity:�ol;� ' 1�wn� ' a5(7� 1048se) ;where �w = G2FT 2 is the weak ross setion and GF =(293GeV)�2 is Fermi's onstant. Note that we set �h = = 1 so that a ross setion also an have the unitsGeV�2.Using the expression for the sale fator given inEq. (2), one �nds that photon visosity dominates un-til � ' 105 se, leading tokd(�) ' (2� 1010se1=2)��3=2 : (A1)For � > 105 se neutrinos visosity takes over, with uto�funtion kd(�) = (4� 1015se3=2)��5=2 (A2)during the osillatory regime. The omoving wavenum-ber k is given here in units of se�1.After � >� 1010se neutrinos deouple and the dominantvisosity is again photon visosity leading to the uto�funtion (A1).Estimating the visosity time, namely kd(�vis) =1=�in for ination, �in � 10�8se and the eletroweakphase transition, �in = �ew ' 4 � 104se, we �nd fromthe expressions above �vis=�injination � 3 � 109 and�vis=�ew � 3000: The �rst result is alulated using pho-ton visosity is just approximative, sine we do not knowthe relevant ross setions up to the sale of ination,1015GeV, but we ertainly expet the value to be verylarge, sine interations are strong and thus visosity isweak. The eletroweak result, alulated using the neu-trino visosity, would be quite reliable in the osillatoryregime. However, for magneti �elds B < 10�9Gauss,for whih the Alfv�en veloity is smaller than 10�4, thesale �vis is still in the over-damped regime. The time atwhih the sale an then e�etively be damped dependson the value of the magneti �eld. In this sense our re-sult is only a lower limit, �vis=�ew >� 3000: This is notvery important for our �nal bounds, where we will evenset log �vis=�in � 1, in order to obtain results whih areindependent of the time of magneti �eld reation.As an example we also determine the damping sale atnuleosynthesis, T ' 0:1MeV, znu ' 4 � 108 whih weneed in Setion 4. Setting D�=2 = 1, we obtain8



kd(�nu) = [2a(�nu)�Tne(�nu)=�nu℄1=2 : (A3)Using ne = �
b=(mpa3), where mp is the proton mass,as well as our expression for the sale fator one obtainskd(�nu) ' 6� 10�7se�1 ' 105=�nuThis an of ourse also be obtained by simply using�nu ' 1011se in the above funtion for photon visositygiven in Eq. (A1). Again, whether or not this sale isin the osillatory regime and an be e�etively damped,depends on the value of B(kd). For B(kd) � 10�6Gauss,whih satis�es the nuleosynthesis bound, this is largelythe ase, and for magneti �elds of interest to us kd(�nu)is the orret damping sale.At the end of the radiation dominated era, photonsdeouple and visosity ats no more. Sine gravity waveprodution in the matter dominated regime is not im-portant, we do not alulate the uto� funtion in thisregime.APPENDIX B: THE GRAVITY WAVE SOURCEOF STOCHASTIC MAGNETIC FIELDSThe Maxwell stress tensor of a magneti �eld in realspae is given byT ij(x; �) = 14� �Bi(x; �)Bj (x; �)�12gij(x; �)Bn(x; �)Bn(x; �)� :In Fourier spae, using the Fourier transform onventionadopted in this paper and the saling of the magneti�eld with time, we haveT ij(k; �) = 14�(2�)3a6 Z d3q�Bi(q)Bj(k � q)�12Bl(q)Bl(k� q)Æij� ; (B1)where we have introdued the fator 1=a6 to transformthe present �eld Bi(k) = Bi(k; �0) bak to the physi-al �eld Bi(k; �) = Bi(k)=a3. �ij(k; �) is the transversetraeless omponent of T ij(k; �), whih soures gravitywaves. Here we give the details of the alulation ofits orrelation funtion, h�ij(k; �)��lm(k0�)i whih weuse to ompute the indued gravity waves. The proje-tor onto the omponent of a vetor transverse to k isPij = Æij � k̂ik̂j . Consequently P iaP jb projets onto thetransverse omponent of a tensor. To obtain the trans-verse traeless omponent we still have to subtrat thetrae. Hene de�ning the projetorP ijab = P iaP jb � 12P ijPabwe have

h�ij(k; �)��lm(k0; �)i = P ijabP lmdhT ab(k; �)T �d(k0; �)i :(B2)To simplify the alulation, we note that up to a trae,whih anyway vanishes in the projetion (B2), T ab(k; �)is just given by�ab(k; �) � 14�(2�)3a6 Z d3qBa(q)Bb(k� q) : (B3)We therefore an writeh�ij(k; �)��lm(k0; �)i = P ijabP lmdh�ab(k; �)��d(k0; �)i :(B4)To ompute the two point orrelator of �, we use expres-sion (B3) and the assumption that the random magneti�eld be Gaussian, so that we an apply Wik's theorem.In other words, produts of four magneti �elds an beredued byhBi(k)B�j(q)Bn(s)B�m(p)i =hBi(k)B�j (q)ihBn(s)B�m(p)i+hBi(k)Bn(s)ihB�j(q)B�m(p)i+hBi(k)B�m(p)ihBn(s)B�j(q)i : (B5)Using also the reality ondition, B�a(k) = Ba(�k),and the two point orrelator (5), we obtainh�ab(k; �)��d(k0; �)i = a�124(2�)8 Z d3qd3p[Æ(k)Æ(k0)�B2(q)B2(�p)(Æab � q̂aq̂b)(Æd � p̂p̂d) ++Æ(q� p)Æ(k � q� k0 + p)B2(q)B2(jk � qj)�(Æa � q̂aq̂)(Æbd � ( dk� q)b( dk� q)d) ++Æ(q� k0 + p)Æ(k � q� p)B2(q)B2(jk � qj)�(Æad � q̂aq̂d)(Æb � ( dk� q)b( dk � q))℄: (B6)The �rst term only ontributes an uninteresting onstantand an be disregarded. For the remaining two termsintegration over d3p eliminates one of the two Æ-funtionsand leads toh�ab(k; �)��d(k0; �)i =Æ(k� k0) a�124(2�)8 Z d3q B2(q)B2(jk� qj)��(Æa � q̂aq̂)(Æbd � d(k� q)b d(k� q)d)+(Æad � q̂aq̂d)(Æb � d(k� q)b d(k� q))� : (B7)Clearly, the orrelator of � and thus also the one of � issymmetri in k and k0 and hene also under the exhangeof the �rst and the seond pair of indies. In addition itis symmetri in the �rst and the seond as well as in thethird and the fourth index. The most general isotropi9



transverse traeless fourth rank tensor whih obeys thesesymmetries has the tensorial strutureMijlm(k) = ÆilÆjm + ÆimÆjl � ÆijÆlm + k�2(Æijklkm +Ælmkikj � Æimkjkl � Æilkjkm � Æjlkikm�Æjmkikl) + k�4kikjklkm : (B8)We ould not �nd a straight forward derivation of thisresult in a textbook on multi-linear algebra where it a-tually belongs, but it an be found, e.g. in [24℄.We an hene seth�ij(k; �)��lm(k0; �)i = f(k; �)2=a12MijlmÆ(k � k0)withh�ij(k; �)��ij (k0; �)i = 4a8 f(k; �)2Æ(k� k0); (B9)To determine the orrelator of � it is therefore suÆientto alulate its trae. With PijabP ijd = PabijP ijd = Pabd,(for the last identity we simply use that projetors areidem-potent), we haveh�ij(k; �)��ij(k0; �)i = Pabdh�ab(k; �)��d(k0; �)i :(B10)A somewhat tedious but straight forward omputationgivesPabd[(Æa � q̂aq̂)(Æbd � ( dk� q)b( dk� q)d)+ (Æad � q̂aq̂d)(Æb � ( dk� q)b( dk � q))℄ =1 + (k̂�(dk�q))2 + (k̂�q̂)2 + (k̂�q̂)2(k̂�( dk�q))2 : (B11)Setting  = k̂ � q̂ and � = k̂ � ( dk� q), and using the fatthat the seond term transforms into the third one underthe transformation q! k� q, we �nally obtainh�ij(k; �)��ij (k0; �)i = a�84(2�)8 Æ(k� k) �Z d3qB2(q)B2(jk� qj)(1 + 22 + 2�2) ; (B12)whih leads to the result for f(k) given in Eq. (10).APPENDIX C: GRAVITATIONAL WAVEPRODUCTIONThe equation for gravity wave prodution due to tensortype anisotropi stresses is�hij + 2 _aa _hij + k2hij = 8�G�ij : (C1)For eah mode we therefore have an equation of the form�h+ 2 _aa _h+ k2h = s(k; �) ; (C2)

where s(k; �) = 8�Ga2 f(k; �). The funtion f only dependson � for n > �3=2 via the damping uto� kd(�). Interms of the dimensionless variable x = k� equation (C2)redues to h00 + 2�xh0 + h = s(k; �)k�2 ; (C3)where � = 1 in the radiation dominated era, and � = 2in the matter dominated era. The homogeneous solu-tions of Eq. (C3) are the spherial Bessel funtions j0 ; y0in the radiation dominated era, and j1=x; y1=x in thematter dominated era respetively. We assume that themagneti �elds were reated in the radiation dominatedepoh, at redshift zin. Using the Wronskian method, thegeneral solution of Eq. (C3) whih vanishes at zin is givenby h(x) = 1(x)g1(x) + 2(x)g2(x) ; (C4)where g1; g2 are the above mentioned homogeneous solu-tions and1(x) = �k�2 Z xxin s(x0)g2(x0)=W (x0)dx02(x) = k�2 Z xxin s(x0)g1(x0)=W (x0)dx0 ;W = g1g02�g01g2 is the Wronskian determinant of the ho-mogeneous solution. Inside the horizon the homogeneoussolutions g1 and g2 begin to osillate. The ontributionto the integral from times where the sale under onsid-eration is sub-horizon is hene negligible. Furthermore,sine the gravity wave energy is growing with wave num-ber (it is proportional to k3f2), our limit will ome fromlarge wave numbers, small sales, whih enter the horizonbefore deoupling. Let us thus solve Eq. (C3) expliitlyin the radiation dominated regime, � < �eq , for a wavenumber whih enters the horizon in the radiation era,k�eq > 1, and in the ase where f is not time depen-dent (n < �3=2). We �rst notie that the WronskianW (j0; y0) = 1=x2. Using the radiation approximationof Eq. (2) for the sale fator, a = H0�p
rad we havek�2s(x)W (x) = 8�Gf(k)H20
rad :Sine y0 diverges at small x the term 1 learly domi-nates. After horizon rossing we haveh(x) ' 1(1)j0(x) = 1(1)sinxx :Performing the integral 1(1), we �ndh(x) ' �8�Gf(k)H20
rad sinxx log(xin) ; (C5)for x > 1 and � < �eq ' p
rad=H0. We have om-pared this formula with the numerial solution and, as10



expeted, found that it is a very reasonable approxima-tion (within less than 10% of the numerial result).After horizon rossing, the gravity waves thus prop-agate freely, and their energy just sales like radiationenergy, so that for k�eq > 1, using Eq. (19)d
G(k)d log(k) ' d�G(k)�rad d log(k)
rad = k3 _h2a2�rad(2�)6G
rad : (C6)During the radiation era, on sub-horizon sales_h ' 8�Gf(k)�H20
rad log(xin) os(x) and a2�rad = 38�G �1��2so thatd
G(k)d log(k) = 4k3f(k)2(8�G)2 log2(xin) os2(x)H40
rad3(2�)5' 12k3f(k)2 log2(xin)�2
rad(2�)5 : (C7)Sine the ratio between the gravity wave energy densityand the radiation energy density is time independent, thisformula is valid also in the matter era. � = 3H20=(8�G)denotes the ritial density today.
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