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1 IntrodutionTopologial defets are ubiquitous in physis. Whenever a sym-metry breaking phase transition ours, topologial defets mayform. The best known examples are vortex lines in type II superondutors or in liquid Helium, and delination lines in liquidrystals [105,24℄. In an adiabatially expanding universe whihools down from a very hot initial state, it is quite natural to pos-tulate that topologial defets may have emerged during a phasetransition in the early universe and that they may have playedthe role of initial inhomogeneities seeding the formation of osmistruture. This basi idea goes bak to Kibble (1976) [84℄. In thisreport we summarize the progress made in the investigation ofKibble's idea during the last 25 years. Our understanding of theformation and evolution of topologial defets is reported almostompletely in the beautiful book by Vilenkin & Shellard [147℄ orthe exellent Review by Hindmarsh & Kibble [70℄, and we shallhene be rather short on that topi. Nevertheless, in order to beself ontained, we have inluded a short hapter on spontaneoussymmetry breaking and defet formation. Our main topi is how-ever the alulation of struture formation with defets, resultswhih are not inluded in [147℄ and [70℄.Besides the formation of struture in the universe, topologialdefets may be relevant for the baryon number asymmetry of theuniverse [33℄. Superonduting osmi strings [153℄ or vortons [20℄might produe the high energy osmi rays [15℄, or even gammaray bursts [12,13℄. The brane worlds whih have have foussed alot of attention reently, may atually just represent topologialdefets in a higher dimensional spae [64,60,61℄. There have alsobeen interesting results on hiral strings and their observationalsignatures [21,133℄. GUT sale osmi strings ould be detetedby their very peuliar lensing properties. For a straight osmistring lensing is very simple [147℄. For a more realisti networkof strings, harateristi austis and usps in the lensing signal4



are very generially expeted [92,143,14℄.The relevant energy sale for a topologial defet is T, the phasetransition temperature. Hene a good estimate for the amplitudeof the dimensionless gravitational potential 	 indued by topo-logial defets is 	 � 4�GT 2 = 4�(T=MP)2 ; (1)where MP denotes the Plank mass. The measurements of os-mi mirowave bakground anisotropies on large sales by theosmi bakground explorer (COBE) satellite [129℄ have foundthat this potential, whih is of the same order as the tempera-ture utuations on large sales, is about 10�5. Hene, for os-mi struture formation, we are interested in phase transitions atT � 10�3MP � 1016GeV. Interestingly, this is just the sale ofthe grand uni�ation phase transition (GUT sale) of supersym-metri GUT's (grand uni�ed theories).Topologial defets represent regions in spae-time where the or-responding �eld (order parameter in ondensed matter physis orHiggs �eld in partile physis) is frustrated. It annot relax intothe vauum state, the lowest energy state, by topologial obstru-tions. They represent positions of higher energy density and arethus inherently inhomogeneous distributions of energy and mo-mentum. We shall disuss onrete examples later.In the remainder of this introdution we give a brief overviewof the problem of struture formation and we present the mainresults worked out in this report.In Chapter 2 we introdue the onept of topologial defet for-mation during symmetry breaking phase transitions, we lassifythe defets and illustrate them with examples.In Chapter 3 we present in detail the theoretial framework usedto investigate struture formation with topologial defets. Thishapter together with two appendies is self ontained and should5



enable a non-speialist in the �eld to fully understand the oftensomewhat skethy literature.In Chapter 4 we disuss numerial simulation of topologial de-fets. We distinguish global and loal defets whih have to betreated in a very di�erent way. We speify the approximationsmade in di�erent numerial implementations and disuss theirvalidity and drawbaks.In Chapter 5 we present the results of simulations of struture for-mation with topologial defets and ompare them with presentobservations.In Chapter 6 we investigate the question in whether the resultsdisussed in Chapter 5 are generi or whether they are just spe-ial ases. We derive properties of the unequal time orrelators ofgeneri ausal saling seeds. Sine these are the sole ingredients inthe alulation of the utuation power spetra, they determinethe 'phase spae' of defet models of struture formation. Wedisuss a model of ausal saling seeds whih mimis the osmimirowave bakground (CMB) anisotropy spetrum of ination.We also onsider the possibility that large sale struture may bedue to a mixture of adiabati inationary initial perturbationsand topologial defets. We study espeially the utuations inthe CMB. We investigate to whih extent CMB parameter esti-mations are degraded if we allow for an admixture of defets.We end with a brief summary of the main results.Throughout this work we use units with  = ~ = kBoltzmann = 1.The basi unit is thus either an energy (we usually take MeV's)or a length, for whih we take m or Mp depending on the sit-uation.We hoose the metri signature (�;+;+;+). Three-dimensionalvetors are denoted in boldfae. The variables x and k are omov-ing position and omoving wave vetor in Fourier spae. Greekindies, �; �; � � � denote spaetime omponents of vetors and ten-sors while Latin indies i; j; � � � denote three dimensional spatialomponents. We mostly use onformal time � with d� = dt=a,6



where t is osmi time and a is the sale fator. Derivatives withrespet to onformal time are indiated by an over-dot, _f = dfd� .1.1 Main resultsBefore we start to disuss models of struture formation withtopologial defets in any detail, let us present the main resultsdisussed in this review.We onentrate primarily on CMB anisotropies. Sine these ani-sotropies are small, they an be alulated (almost fully) withinlinear osmologial perturbation theory. To ompare models withother data of osmi struture, like the galaxy distribution or ve-loities, one has to make some assumptions onerning the notwell understood relation between the distribution of galaxies andof the dark matter, the problem of biasing. Furthermore, on smallsales one has to study non-linear Newtonian lustering whih isusually done by N -body simulations. But to lay down the initialonditions for N -body simulations, one does not only need toknow the linear power spetrum, but also the statistial distribu-tion of the utuations whih is largely unknown for topologialdefets. Flutuations indued by topologial defets are generi-ally non-Gaussian, but to whih extent and how to haraterizetheir non-Gaussianity is still an open question. In this report,we therefore onentrate on CMB anisotropies and their polar-ization and shall only mention on the side the indued matterutuations and bulk veloities on large sales.Like inationary perturbations, topologial defets predit a Har-rison-Zel'dovih spetrum of perturbations [68,157℄. Therefore,the utuation spetrum is in good agreement with the COBEDMR experiment [129℄, whih has measured CMB anisotropieson large angular sales and found that they are approximatelyonstant as expeted from a Harrison-Zel'dovih spetrum of ini-tial utuations (see e.g. [109℄).7



Sine quite some time it is known, however, that topologialdefet di�er from adiabati inationary models in the aoustipeaks of the CMB anisotropy spetrum [43℄. Due to the isour-vature nature of defets, the position of the �rst aousti peak isshifted from an angular harmoni of about ` � 220 to ` � 350(or up to ` � 500 in the ase of osmi strings) for a spatiallyat universe. More important, the peaks are muh lower in de-fet models and they are smeared out into one broad hump withsmall wiggles at best. Even by hanging osmologial parametersat will, this seond harateristis annot be brought in agree-ment with present CMB anisotropy data like [106,65,93℄. Alsothe large sales bulk veloities, whih measure utuation ampli-tudes on similar sales turn out to be too small [46℄.As the CMB anisotropy signals from osmi strings and fromglobal O(N) defets are quite di�erent, it is natural to wonderhow generi these results may be. Interestingly enough, as weshall see in Chapter 6, one an de�ne 'saling ausal seeds', i.e.initial perturbations whih obey the basi onstraints for topolog-ial defets, whih show a CMB anisotropy spetrum resemblingadiabati inationary preditions very losely [139℄. This 'Turokmodel' an nevertheless be distinguished from adiabati pertur-bations by the CMB polarization spetrum. Also mixed modelswith a relatively high degree of defet admixture, up to morethan 50%, are in good agreement with the data.1.2 Cosmi struture formationThe geometry of our universe is to a very good approximationisotropi and therefore (if we assume that we are not situatedin a speial position) also homogeneous. The best observationalevidene for this fat is the isotropy of the osmi mirowavebakground whih is (apart from the dipole anisotropy) on thelevel of about 10�5 { 10�4.Nevertheless, on galaxy and luster sales, the matter distribu-8



tion is very inhomogeneous. If these inhomogeneities have grownby gravitational instability from small initial utuations, theamplitude of the initial density utuations have to be about10�4 to beome of order unity or larger today. Radiation pres-sure inhibits growth of perturbations as long as the universe isradiation dominated, and even in a matter dominated universesmall perturbations grow only like the sale fator.The disovery of large angular sale utuations in the CMB bythe DMR experiment aboard the COBE satellite [129℄, whih arejust about of the needed amplitude, is an important support ofthe gravitational instability piture. The DMR experiment alsorevealed that the spetrum of utuations is 'at', whih meansthat the utuations have a �xed amplitude A when entering theHubble horizon. This implies that temperature utuations onlarge sales are onstant, as measured by COBE:* �TT !2 (#)+ ' 10�10 = onstant, (2)independent of the angle #, for # � 1o. These utuations areof the same order of magnitude as the gravitational potential.Their smallness therefore justi�es the use of linear perturbationtheory. Within linear perturbation theory, the gravitational po-tential does not grow. This observation originally led Lifshitz toabandon gravitational instability as the origin for osmi stru-ture [96℄. But density utuations of dust an beome large andan ollapse to form galaxies and even blak holes. At late timesand on sales whih are small ompared to the horizon, linear per-turbation theory is no longer valid and numerial N-body simu-lations have to be performed to follow the formation of struture.But also with N-body simulations one annot ompute the detailsof galaxy formation whih strongly depend on thermal proesseslike ooling and formation of heavy elements in stars. Therefore,the relation of the power spetrum obtained by N-body simula-tions to the observed galaxy power spetrum may not be straightforward. This problem is known under the name of 'biasing'.9



Within linear perturbation analysis, struture formation is de-sribed by an equation of the formDX(k; �) = S(k; �) ; (3)where D is a time dependent linear di�erential operator, k isthe wave vetor and X is a long vetor desribing all the osmiperturbation variables for a given k-mode, like the dark matterdensity and veloity utuations, the CMB anisotropy multipoleamplitudes and so on. S is a soure term. In Chapter 3 we willwrite down the system (3) expliitly.There are two basially di�erent lasses of models for strutureformation. In the �rst lass, the linear perturbation equationsare homogeneous, i.e. S � 0, and the resulting struture is de-termined by the initial onditions and by the osmologial pa-rameters of the bakground universe alone. Inationary initialperturbations are of this type. In most models of ination, theinitial utuations are even Gaussian and the entire statistialinformation is ontained in the initial power spetrum. The evo-lution is given by the di�erential operator D whih depends onthe osmologial parameters.In the seond lass, the linear perturbation equations are inho-mogeneous, having a so alled soure term or 'seed', S, on theright hand side whih evolves non-linearly in time. Topologialdefets are of this seond lass. The diÆulty of suh models liesin the non-linear evolution of the seeds, whih in most ases hasto be determined by numerial simulations. Without additionalsymmetries, like e.g. saling in the ase of topologial defets, itis in general not possible to simulate the seed evolution over thelong time-sale and for the onsiderable dynamial range neededin osmology. We shall see in Chapter 4 how this problem is over-ome in the ase of topologial defets. An additional diÆultyof models with seeds is their non-Gaussian nature. Due to non-linear evolution, even if the initial onditions are Gaussian, theseeds are in general not Gaussian at late times. The utuation10



power spetra therefore do not ontain the full information. Allthe redued higher moments an be relevant. Unfortunately onlyvery little work on these non-Gaussian aspets of seed models hasbeen published and the results are highly inomplete [59,42,58℄.
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2 Symmetry Breaking Phase Transitions and the Formation ofTopologial Defets2.1 Spontaneous symmetry breakingSpontaneous symmetry breaking is a onept whih originated inondensed matter physis. As an example onsider the isotropimodel of a ferro-magnet: although the Hamiltonian is rotationallyinvariant, the ground state is not. The magneti moments pointall in the same diretion.In models of elementary partile physis, symmetry breaking ismost often desribed in terms of a salar �eld, the Higgs �eld. Inondensed matter physis this �eld is alled the order parameter.It an also be a vetor or tensor �eld.A symmetry is alled spontaneously broken if the ground stateis not invariant under the full symmetry of the Lagrangian (orHamiltonian) density. Sine the symmetry group an be repre-sented as a group of linear transformations, this implies that thevauum expetation value of the Higgs �eld is non-zero.The essential features of a spontaneously broken symmetry anbe illustrated with a simple model whih was �rst studied byGoldstone (1961) [63℄. This model has the lassial LagrangiandensityL = �� ������ V (�) with V = 14�(j�j2 � �2)2 : (4)Here � is a omplex salar �eld and � and � are real positive on-stants. The potential in (4) is alled the 'Mexian hat potential'as it looks somewhat like a Mexian sombrero. This Lagrangiandensity is invariant under the group U(1) of global phase trans-formations, �(x) 7! ei��(x) : (5)12



The minima of the potential V lie on the irle j�j = � whih isalled the 'vauum manifold',M = S1� (here and in what followsSnR denotes an n-sphere of radius R and Sn denotes an n-sphereof radius 1). The notion 'global' indiates that the symmetrytransformation is global, i.e., � is independent of the spaetimeposition x. The quantum ground states (vauum states) j0i ofthe model are haraterized byh0j�j0i = �ei� 6= 0 : (6)A phase transformation hanges � into � + �, hene a groundstate is not invariant under the symmetry transformation givenin Eq. (5). (Clearly, the full vauum manifold M is invariantunder symmetry transformations and thus a mixed state whihrepresents a homogeneous mixture of all vauum states is stillinvariant even though no pure state is.) The only state jui in-variant under the symmetry (5), haraterized by huj�jui = 0,orresponds to a loal maximum of the potential. Small pertur-bations around this 'false vauum' have 'negative mass' whihindiates the instability of this state:V (�) = �12��2j�j2 + onst. +O(j�j4) : (7)The vauum states of the broken symmetry are all equivalent andwe an thus reveal their properties by studying one of them. Foronveniene we disuss the vauum state with vanishing phase,h0j�j0i = �. Expanding the �eld around this state yields�(x) = (� + 1p2'(x))ei#(x) ; (8)where ' and # are real �elds. The Lagrangian density in termsof ' and # beomesL = 12 (��')2 + �2 (��#)2 � 12��2'2 + Lint('; #) : (9)13



The interation Lagrangian Lint is easily determined from theoriginal Lagrangian, (4). This form of the Lagrangian shows thatthe degree of freedom ' is massive with mass m2 = ��2 while #desribes a massless partile (irular exitations), a Goldstoneboson. This simple model is very generi: whenever a ontinu-ous global symmetry is spontaneously broken, massless Goldstonebosons emerge. Their number equals the dimension of the vauummanifold, i.e., the dimension of a group orbit (in the spae of �eldvalues). In our ase the spae of �eld values is C � R2 . A grouporbit is a irle of dimension 1 leading to one massless boson, theexitations tangential to the irle whih ost no potential energy.The general result an be formulated in the following theorem:Theorem 1 (Goldstone, 1961) [63℄ If a ontinuous global sym-metry, desribed by a symmetry group G is spontaneously brokento a sub-group H � G, massless partiles emerge. Their num-ber is equal to the dimension n of the vauum manifold M (the\number of broken symmetries"). Generially,M� G=H and n = dimG� dimH = dim (G=H) ;where here � means topologial equivalene.In our example G = U(1), H = f1g and n = 1� 0 = 1.Another well-known example are the three pions, ��, �0, whihare the Goldstone bosons of isospin (proton/neutron) symmetry.There the original symmetry, SU(2) is ompletely broken leadingto n = dimSU(2) = 3 Goldstone bosons (see. e.g. [76℄).Very often, symmetries in partile physis are gauged (loal). Thesimplest gauge theory is the Abelian Higgs model (sometimes alsoalled salar eletrodynamis). It is desribed by the Lagrangiandensity L = D� ��D��� V (�)� 14F��F �� ; (10)where � is again a omplex salar �eld and D� = ��� ieA� is the14



ovariant derivative w.r.t. the gauge �eld A�. F�� = ��A����A�is the gauge �eld-strength, e the gauge oupling onstant and Vis the potential given in Eq. (4).This Lagrangian is invariant under the group of loal U(1) trans-formations,� 7! ei�(x)�(x) ; A�(x) 7! A�(x) + 1e���(x) :The minima of the potential, � = �ei�, are not invariant, thesymmetry is spontaneously broken. Expanding as before aroundthe vauum expetation value h0j�j0i = �, we �ndL=[��'� (ieA� + i��#)(� + ')℄[��'+ (ieA� + i��#)(� + ')℄�12m2'2 � 12�'4 � 14F��F �� ; (11)where, as in the global ase, m2 = ��2. Here # is no longer aphysial degree of freedom. It an be absorbed by a gauge trans-formation. After the gauge transformation A� 7! A� � (1=e)��#the Lagrangian given in Eq. (11) beomesL = (��')2 � 12m2'2 + 12M2A�A� � 14F��F �� + Lint ; (12)with m = p�� and M = p2e�. The gauge boson \absorbs"the massless Goldstone boson and beomes massive. It has nowthree independent polarizations (degrees of freedom) instead ofthe original two. The phenomenon desribed here is alled the'Higgs mehanism'. It works in the same way also for more om-pliated non-Abelian gauge theories (Yang Mills theories).On the lassial level, what we have done here is just rewritingthe Lagrangian density in terms of di�erent variables. However,on a quantum level, partiles are exitations of a vauum state,a state of lowest energy, and these are learly not desribed by15



the original �eld � but by the �elds ' and # in the global aseand by ' and Ai in the loal ase.The two models presented here have very lose analogies in on-densed matter physis:a) The non-relativisti version of Eq. (4) is used to desribe superuids where � is the Bose ondensate (the best known examplebeing super uid He4).b) The Abelian Higgs model, Eq. (10) is the Landau Ginzburgmodel of super-ondutivity, where � represents the Cooper pairwave funtion.A very physial and thorough aount of the problem of sponta-neous symmetry breaking an be found in Weinberg [151℄.It is possible that also the salar �elds in partile physis (e.g.the Higgs of the standard model whih is supposed to providethe masses of theW� and Z0) are not fundamental but \onden-sates" as in ondensed matter physis. Maybe the fat that nofundamental salar partile has been disovered so far has somedeeper signi�ane.2.2 Symmetry restoration at high temperatureIn partile physis like in ondensed matter systems, symmetrieswhih are spontaneously broken an be restored at high tem-peratures. The basi reason for this is that a system at �nitetemperature is not in the vauum state whih minimizes energy,but in a thermal state whih tends to maximize entropy. We thushave to expand exitations of the system about a di�erent state.More preisely, it is not the potential energy, but the free energyF = E � TS (13)whih has to be minimized. The equilibrium value of � at tem-perature T , h�iT , is in general temperature dependent [86℄. At16



low temperature, the entropy term is unimportant. But as thetemperature raises, low entropy beomes more and more ostlyand the state tends to raise its entropy. The �eld � beomes lessand less ordered and thus its expetation value h�iT beomessmaller. Above a ertain ritial temperature, T � T, the ex-petation value h�iT vanishes. If the oupling onstants are notextremely small, the ritial temperature is of order T � �.To alulate the free energy of quantum �elds at �nite temper-ature, one has to develop a perturbation theory similar to theT = 0 Feynman diagrams, where ordinary Greens funtions arereplaed by thermal Greens funtions. The inverse temperature,� = 1=(kT ) plays the role of an imaginary time omponent. Itwould lead us too far from the main topi of this review to intro-due thermal perturbation theory, and there are exellent reviewson the subjet available, see, e.g. [11,151,82,150,38,86℄.Here we give a muh simpli�ed derivation of the lowest order (treelevel) thermal orretion to the e�etive potential [147℄. In lowestorder the partiles are non-interating and their ontributions tothe free energy an be summed (eah degree of freedom desribesone partile), Ve�(�; T ) = V (�) +Xn Fn(�; T ) : (14)Here V (�) is the zero temperature e�etive potential [25℄ and Fnis the free energy of eah degree of freedom,Fn = � Z d3k(2�)3 ln(1� exp(��(k)=T )) ; (15)as known from statistial mehanis. The upper sign is valid forbosons and the lower one for fermions. �(k) = qk2 +m2n.For T � mn the free energy is exponentially small. But it anbeome onsiderable at high temperature, T � mn, where we17



obtain Fn = 8>>><>>>:��290T 4 + m2nT 224 +O(m4n) bosons�7�2720T 4 + m2nT 248 +O(m4n) fermions. (16)If symmetry restoration ours at a temperature well above allthe mass thresholds, we an approximate Ve� byVe�(�; T ) = Ve�(�; T = 0) + 124M2T 2 � �290NT 4 ; (17)N = NB + 78NF ; M2 = Xbosonsm2n + 12 Xfermionsm2n : (18)Here, mi is the formal mass given by m2i = �2V(��i)2 . If the potentialontains a �4-term, the mass inludes a term / �2i , whih leadsto a positive quadrati term, / T 2�2i . If the temperature is suÆ-iently high, this term overomes the negative quadrati term inthe Mexian hat potential and � = 0 beomes a global minimumof the potential. The temperature at whih this happens is alledthe ritial temperature.In the Abelian Higgs model, the ritial temperature T, be-omes [147℄ T 2 = 6��2�+ 3e2 : (19)For non-Abelian O(N) models one �nds analogously [147℄T 2 = 6��2N+24 �+ 3(N � 1)e2 : (20)The ritial temperature for global symmetry breaking, i.e. with-out gauge �eld, is obtained in the limit e ! 0. As expeted, fore2 <� � one �nds T � � : (21)18



Like in ondensed matter systems, a phase transition is seondorder if � = 0 is a loal maximum and �rst order if � = 0 is aloal minimum. In the example of the Abelian Higgs model, theorder depends on the parameters e and � of the model.In O(N) models, or any other model where the vauum manifold(i.e. the spae of minima of the e�etive potential) of the bro-ken symmetry phase is non-trivial, minimization of the e�etivepotential �xes the absolute value of � but the diretion, �=j�j,is arbitrary. The �eld an vary in the vauum manifold, givenby the sphere SN�1 = O(N)=O(N � 1) for O(N) models. At lowtemperature, the free energy is minimized if the phase is onstant(no gradient energy) but after the phase transition �=j�j will varyin spae. The size of the pathes with roughly onstant diretionis given by the orrelation length � whih is a funtion of time. Inthe early universe � is bounded by the size of the ausal horizon,�(t) � dH(t) � t for power law expansion. (22)Formally � diverges at the phase transition, but also our pertur-bative treatment is no longer valid in the viinity of the phasetransition sine utuations beome big. A thorough treatmentof the physis at the phase transition is the subjet of moderntheory of ritial phenomena and goes beyond the sope of thisreview. Very often, the relevant orrelation length is the orre-lation length at the Ginsburg temperature, TG, the temperatureat whih thermal utuations are omparable to the mass term.However, in the osmologial ontext there is also another sale,the expansion time. As the system approahes the phase tran-sition, it takes longer and longer to reah thermal equilibrium,and at some temperature, expansion is faster than the speed atwhih the system equilibrates and it falls out of thermal equilib-rium. It has been argued [158℄ that it is the orrelation lengthat this moment, somewhat before the phase transition, whih isrelevant. 19



If the phase transition is seond order, the order parameter �hanges ontinuously with time. In a �rst order transition, thestate � = 0 is meta-stable (false vauum) and the phase transi-tion takes plae spontaneously at di�erent positions in spae anddi�erent temperatures T < T via bubble nuleation (super ool-ing). Thermal utuations and/or tunneling take the �eld overthe potential barrier to the true vauum. The bubbles of true va-uum grow and eventually oalese thereby ompleting the phasetransition.It is interesting to note that the order of the phase transitionis not very important in the ontext of defets and strutureformation. Even though the number of defets per horizon volumeformed at the transition does depend on the order and, espeiallyon the relevant orrelation length [158℄, this an be ompensatedby a slight hange of the phase transition temperature to obtainthe required density of defets.As we have seen, a non-trivial vauum manifold, M 6= f0g, ingeneral implies that shortly after a phase transition the order pa-rameter has di�erent values at di�erent positions in spae. Suhnon-trivial on�gurations are generially unstable and will even-tually relax to the on�guration � =onstant, whih has the low-est energy. Naturally, we would expet this proess to happenwith the speed of light. However, it an be slowed signi�antlyfor topologial reasons and intermediate long lived on�gurationswith well on�ned energy may form, these are topologial defets.Suh defets an have important onsequenes in osmology.Several exat solutions of topologial defets an be found inthe literature, see e.g. [147℄. In the ase of global defets, i.e.defets due to global symmetry breaking, the energy density ofthe defet is mainly due to gradient energy in the salar �eld andis therefore not well loalized in spae. The salar �eld gradientof loal defets (defets due to the breaking of a loal, or gaugesymmetry) is ompensated by the gauge �eld and the energy iswell on�ned to the loation of the defet. To exemplify this,20



we present the solutions for a global and a loal straight osmistring.2.3 Exat solutions for strings2.3.1 Global stringsWe onsider a omplex salar �eld, �(x) 2 C , with LagrangianL = 12������� V (�) ; V = �4(j�j2 � �2)2 (23)at low temperature. The vauum manifold is a irle of radius�, M = f�(x) 2 C jj�j = �g. At high temperature, T � �,the e�etive potential has a single minimum at � = 0. As thetemperature drops below the ritial value T � �, a phase tran-sition ours and � assumes a �nite vauum expetation valueh0j�j0i 6= 0 whih is unorrelated at suÆiently distant points inphysial spae. If we now onsider a losed urve in spae� : [0; 1℄! R3 : s 7! x(s) ; x(0) = x(1)it may happen that �(x(s)) winds around in the irleM� S1�.We then have �(x(s)) = � exp(i�(s)) with �(1) = �(0) + n2�with n 6= 0. Sine the integer n (the winding number of themap � ! S1� : s 7! �(x(s))) annot hange if we shrink theurve �([0; 1℄) ontinuously, the funtion �(s) must be ill de�nedsomewhere in the interior of �, i.e. �must assume the value � = 0and thus have higher potential energy somewhere in the interiorof �([0; 1℄).If we ontinue this argument into the third dimension, a string ofhigher potential energy must form. The size of the region withinwhih � leaves the vauum manifold, the diameter of the string,is of the order ��1. For topologial reasons, the string annot end.21



It is either in�nite or losed. ?We now look for an exat solution of a stati, in�nite straightstring along the z-diretion. We make the ansatz�(x) = �fs(��) exp(in') ; (24)with � = px2 + y2 and tan' = y=x, ' is the usual polar an-gle. The �eld equation of motion then redues to an ordinarydi�erential equation for fs,f 00s + 1vf 0s � n2v2 fs � �2fs(f 2s � 1) = 0 ; (25)where v = �� and 0 = ddv . A solution of this di�erential equationwhih satis�es the boundary onditions fs(0) = 0 and fs(v)!v!11 an be found numerially. It is a funtion of p���. and behaveslike fs � 1�O(1=v2) for p��� � 1 fs � O(vn) for p��� � 1:The energy momentum tensor of the string is given byT 00 = T zz =���42 [f 02 � 12(f 2 � 1)2 + n2��2�2f 2℄ (26)T �� =0 for all other omponents.The energy per unit length of a ross-setion of string out toradius R is �(R) = 2� RZ0 T 00 �d� � ��2 ln(p��R) : (27)The log divergene for large R results from the angular depen-dene of �, the gradient energy, the last term in Eq. (26), whih? The only exeption may our if other defets are present. Then a string an endon a monopole. 22



deays only like 1=�2. In realisti on�gurations an upper uto�is provided by the urvature radius of the string or by its distaneto the next string.Also for a single, spherially symmetri global monopoles solutionthe total energy divergies (linearly). A non-trivial results shows,however, that the energy needed to deform the monopole into atopologially trivial on�guration is �nite [1℄.2.3.2 Loal stringsWe also desribe a string solution of the Abelian Higgs model,the Nielson-Oleson or Abrikosov vortex [108℄.The Lagrangian density is the one of salar eletrodynamis,Eq. (10),L = (�� + ieA�)��(�� � ieA�)�� �4(j�j2��2)2 � 14F��F �� :(28)We are looking for a ylindrially symmetri, stati solution ofthe �eld equations. For �!1 we want the solution to approaha vauum state, i.e. �! � exp(in') and A� ! (n=e)��' so thatD��! 0 (the gauge �eld `sreens' the gradient energy).We insert the following ansatz into the �eld equations�=�fA(�) exp(in') (29)Ax=�ne (y=�2)�(�) ; Ay = ne (x=�2)�(�) ; Az = 0 : (30)whih leads to two oupled ordinary di�erential equations for fAand �d2fAd�2 + 1� dfAd� � n2�2 fA(� � 1)2 � ��22 fA(f 2A � 1)=0 (31)d2�d�2 + 1� d�d� � 2e2�2f 2A(�� 1)=0 : (32)23



Solutions whih desribe a string along the z-axis satisfy theasymptotis above whih requirefA(0) = �(0) = 0; and fA(�) ; �(�)!�!1 1 : (33)The solution to this system of two oupled ordinary di�erentialequations is easily obtained numerially.Asymptotially, for �!1, the �-equation redues to the di�er-ential equation for a modi�ed Bessel funtion and we have�(�) ' 1� ��K1(p2e��); j��1j � O �p��e�p2e��� : (34)For large values of � � �=2e2, the fallo� of fA is ontrolled by thegauge �eld oupling,/ (��1)2. For � <� 4 the gauge �eld ouplingan be negleted at large radii � and we obtain for �!1fA(�) � 1�K0(p���) � 1�O �exp(�p���)� : (35)This �eld on�guration leads to F0i = F3i = 0, hene Ei = B1 =B2 = 0 ; and B3 = �3ijFij = �1A2 � �2A1 = ne��0 : (36)The energy per unit length of the string is� = 2��2 1Z0 sds "f 02A + n(1� �)2f 2A + �4(f 2A � 1)2# ; (37)with s = ��. All the terms in the integral are regular and deayexponentially for large s. The energy per unit length of gaugestring is �nite. The gradient energy whih leads to the divergenefor the global string is `sreened' by the gauge �eld. The integral isof the order � � 2��2. This value is exat in the ase � = jnj = 1,where it an be omputed analytially. In the general ase with24



jnj = 1, we have � = 2��2g(�) ; where g(�) is a slowly varyingfuntion of order unity.The thikness of a Nielson Oleson string is about ��1 and onlength sales muh larger than ��1 we an approximate its energymomentum tensor by(T �� ) = �Æ(x)Æ(y)diag(1; 0; 0; 1) : (38)2.4 General remarks on topologial defetsIn three spatial dimensions four di�erent types of defets anform. The question whether and what kind of topologial defetsform during a symmetry breaking phase transition is determinedby the topology of the vauum manifoldM:� IfM is disonneted, domain walls from. Example: if thesymmetry �! �� for a real salar �eld is spontaneously bro-ken, M = f��; �g. Domain walls form when disrete symme-tries are broken. Disrete symmetries are not ontinuous andtherefore annot be gauged. Hene domain walls are alwaysglobal defets.� If there exist loops inM whih annot be ontinuously shrunkinto a point, M is not simply onneted, strings form.Example: if U(1) is ompletely broken by a omplex salar�eld,M = S1, see previous subsetion.� IfM ontains non-ontratible spheres,monopoles form.Example: if O(3) is broken to O(2) by a three omponent salar�eld,M = S2 = O(3)=O(2) (see Ref. [118℄).� IfM ontains non-ontratible 3-spheres, textures form.Example: if O(4) is broken to O(3) by a four omponent salar�eld,M = S3 = O(4)=O(3).These topologial properties of M are best desribed by thehomotopy groups, �n(M). The group �3(M) is relevant for theexistene of textures, �2(M) deides about monopoles, �1(M) is25



relevant for strings and �0(M) for domain walls [85℄. If a symme-try group G is spontaneously broken to a subgroup H 2 G, thevauum manifold is in general equivalent to the quotient spae,M' G=H. In the monopole example above, we have G = O(3)and H = O(2). The vauum manifold isM' S2 ' O(3)=O(2).2.5 Defet formation and evolution in the expanding universeOur universe whih is to a good approximation an expandingFriedman universe was muh denser and hotter in the past. Dur-ing expansion the universe may ool through a ertain ritialtemperature T at whih a symmetry G is spontaneously brokendown to H � G. If M = G=H is topologially non-trivial, topo-logial defets an form during the phase transition. This senariois alled the Kibble mehanism [85℄. We apply the Kibble meha-nism to estimate the energy density in defets from phase transi-tions with di�erent vauum manifolds at a given temperature T.Consider a �eld theory with symmetry group G and Higgs-�eld� with a self-interation potential V (�). For illustration we use� 2 C , G = U(1) andV (�) = 14�(��� �2)2: (39)At �nite temperature, the free energy is of the formVT (�) = A2 T 2��+ V0(�); (40)where A is a real onstant given by ombinations of � and otheroupling onstants (e.g. gauge ouplings, Yukawa ouplings).The sign of A depends on the number of fermions. We assumeA > 0, i.e. that there are only few fermions and suÆientlysmall Yukawa-ouplings. Then, from Eqs. (39) and (40), we seethat the e�etive masses of the �eld � at temperature T and T26



are m2(T ) � V 00T (� = 0) = AT 2 � ��2;m(T) = 0; T = �  �A!1=2 ; for � � A � 1; T � �:
At T = T, this �eld theory undergoes a seond order phasetransition: the equilibrium point � = 0 beomes unstable forT < T (m2 beomes negative) and � assumes a non-vanishingvauum expetation value.For another form of VT , the equilibrium � = 0 at T = T an bemeta-stable so that the phase transition is of �rst order. Hene,to deide whether the transition is of �rst or seond order, it isimportant that we an rely on the form of the e�etive potentialVT (�) whih is obtained by perturbation theory or by numeriallattie alulations. This is in general a diÆult problem. For theeletro-weak theory, e.g. , it was disovered only reently thatthe eletroweak transition is probably not a real phase transitionbut just a ontinuous ross-over [122℄.The orrelations of the �eld � are desribed by the thermalGreens funtions: G(jx� x0j) = h��(x; t)�(x0; t)i:
For massive partiles at T > T where !2k = k2 +m2(T ) one anwrite G(jx� x0j) = 2 1Z0 d3k(2�)3 1!k eik(x�x0)e!k=T � 1 +G0;27



where G0 are the zero temperature ontributions. For T ! Tsuh that m(T )� T we have, with r � jx� x0j:G(r) ' 8>>><>>>:T 2=6; for r� 1=Texp[�m(T )r℄T=(2�r); for r� 1=T :For T ! T, m(T ) ! 0 and therefore, at TC G � r�1 for larger. The orrelation length � for the phase transition (of 2nd order)is de�ned as � := 1T . This de�nition is di�erent from the de�ni-tion used in solid state physis. There one de�nes the orrelationlength as the length above whih the orrelation dereases expo-nentially. In this sense, the orrelation length would be in�niteat T (r = 1=m(T )). In osmology the orrelation length annotdiverge beause of ausality. It is bounded from above by the dis-tane a photon an travel during the age of the universe until t.This distane is (for non-inationary expansion) given bylH = a(�)� �= t; t := Z a(�) d�:Hene another meaningful de�nition of the orrelation lengthwould be � := lH �= t. Often also the orrelation length at theGinzburg temperature or at the temperature (before the phasetransition) at whih the system drops out of thermal equilib-rium [158℄ is hosen. For the following it is not important whihof the above de�nitions we use. We only require that � � lH .We now suppose that diretly after the phase transition, the va-uum expetation value h�i takes arbitrary unorrelated values inpoints with distane r > �, but stays ontinuous (�nite gradientenergy!). If �n(M) is non-trivial for n � 3, the maph�i : Sn !M; x 7! h�(x)ifor a large enough n-sphere Sn in physial spae, may represent anon-trivial element of �n(M). Then �(Sn) annot be ontratedontinuously to a point onM and, somewhere inside Sn, h�i has28



to leave the vauum manifold, h�i(p) 62 M. These positions ofhigher potential energy are topologial defets. The type of defetformed depends on the order n of the non-trivial homotopy group:� n = 0: 2-dimensional defets, domain walls, d = 3� n = 1: line-like defets, osmi strings, d = 2� n = 2: point-like defets, monopoles, d = 1� n = 3: event-like defets, texture, d = 0.Here d is the spaetime dimension of the defet, d = 4 � 1 � n.If a vauum manifold has several nontrivial homotopy groupswith n � 3, generially only the lowest n defets survive and thehigher order defets are instable. As an example, in the isotropito nemati phase transition of liquid rystals [24℄ O(3) is brokento O(2) � Z2 leading to M = O(3)=(O(2) � Z2 � S2=Z2. Thisallows for texture, monopoles and strings, but textures deayinto monopole anti-monopole pairs and monopole/anti-monopolepairs are onneted by strings and attrat eah other until theyannihilate. Only strings sale [24℄.The ase of texture, n = 3 an be desribed in this ontext only ifeither the universe is losed and physial spae is a three sphereof if � is asymptotially parallel, i.e. �(x; t) jxj!1�! �0. Then thepoints jxj ! 1 an be identi�ed in all diretions and we an re-gard � as a map from R3 [f1g � S3 toM and ask whether thismap is topologially trivial or not. In the osmologial ontextthis onept violates ausality. However, the texture ase allowsfor a texture winding number density whose integral over all ofspae only takes integer values if � is asymptotially onstant (orspae is a three sphere). The integral of the winding number den-sity over a region of spae tells us whether the �eld on�gurationinside ontains textures.Aording to the above desription of the proess of defet for-mation after a osmologial phase transitions, alled the Kibblemehanism[85℄, we typially expet on the order of one defetper horizon volume. Simulations and analytial arguments show29



that the atual number is somewhat larger for osmi strings andsigni�antly smaller for texture.If defets are loal, the salar �eld gradiants are ompensatedby the gauge �eld and they do not interat at large distaneother than gravitationally in the simplest model, where no mass-less harged partiles 'live' inside the defet. An exeption tothis are superonduting osmi strings [153℄. For example lo-al monopoles do not annihilate one they are formed and theirdensity just sales with the expansion of the Universe, like 1=a3.Sine they are non-relativisti,m > T , their energy density salesthe same way and they soon dominate the total energy densityof the universe. Every simple GUT group produes monopoleswhen it breaks down to the standard model symmetry group,SU(3)�SU(2)�U(1). The observed absene of monopoles there-fore represents a serious problem for the uni�ation of standardosmology with grand uni�ed theories [88℄. Loal texture, on theontrary, soon thin out and do not indue suÆiently strongperturbations to generate struture in the universe. Only loalstrings sale, i.e. ontribute a onstant small fration to the en-ergy density of the universe, and are therefore possible andi-dates of topologial defets for struture formation. If the group�1(M) is non-Abelian (�1 is the only homotopy group whih anbe non-Abelian), the osmi string network beomes 'frustrated'and does not sale. Suh a low energy frustrated string networkhas been proposed as andidate for the osmi dark energy [18℄.The situation is di�erent for global defets. There, the main on-tribution to the energy density omes from the Higgs �eld andsales as 1=t2, like the bakground energy density in the universe(up to logarithmi orretions for global strings). The only exep-tion are domain walls whih are forbidden, sine they soon ometo dominate, leading to a very inhomogeneous universe. Reently,however 'soft domain walls' [9℄, i.e. domain walls forming at a latetime phase transition, have been studied.
30



3 Theoretial Framework3.1 Linear osmologial perturbations with seedsA basi tool for osmi struture formation is linear osmologialperturbation theory. The fat that CMB anisotropies are smallshows that at least initially also perturbations in the matter den-sity have been muh smaller than unity and therefore they maybe treated within linear perturbation theory. It is generally as-sumed (an assumption whih is supported by several observa-tional fats, see e.g. [132℄) that perturbations are still linear onsales above about 10h�1Mp. On smaller sales non-linear N-body simulations are needed to ompute the evolution of densityutuations.The prinipal di�erene in perturbation theory in models withtopologial defets as ompared to the more familiar ination-ary models, is the fat that here osmi perturbation equationsare not homogeneous. The perturbations are indued by 'seeds'whih are not present in the bakground energy momentum ten-sor.. The defet energy momentum tensor enters in the pertur-bation equation as 'soure' or 'seed' term on the right hand side,but the defets themselves evolve aording to the bakgroundspae-time. Perturbations in the defet evolution are of seondorder. (This proedure has sometimes also been termed the 'sti�approximation' [145℄, but it is atually nothing else than onsis-tent linear perturbation theory.).Gauge-invariant perturbation equations for osmologial modelswith seeds have been derived in Refs. [40,41℄. Here we follow thenotation and use the results presented in Ref. [41℄. De�nitions ofall the gauge-invariant perturbation variables used in this Reviewin terms of perturbations of the metri, the energy momentumtensor and the photon and neutrino brightness are given in Ap-pendix A for ompleteness. 31



We onsider a bakground universe with density parameter 
0 =
m + 
� = 1, onsisting of photons, old dark matter (CDM),baryons and neutrinos. At very early times z � zde � 1100,photons and baryons form a perfetly oupled ideal uid. As timeevolves, and as the eletron density drops due to reombinationof primordial helium and hydrogen, Compton sattering beomesless frequent and higher moments in the photon distribution de-velop. This proess has to be desribed by a Boltzmann equation.Long after reombination, free eletrons are so sparse that the ol-lision term an be negleted, and photons evolve aording to theollisionless Boltzmann or Liouville equation. During the epohof interest here, neutrinos are always ollisionless and thus obeythe Liouville equation.In the next setion, we parameterize in a ompletely general waythe degrees of freedom of the seed energy momentum tensor.Setion 3.3 is devoted to the perturbation of Einstein's equationsand the uid equations of motion. Next we treat the evolutionof CMB photons by the Boltzmann perturbation equation, in-luding polarization. The detailed derivations as well as the ex-pressions for the CMB anisotropy and polarization power spetraare given in Appendix B. We �nally explain how to ompute thepower spetra of density utuations, CMB anisotropies and pe-uliar veloities by means of the derived perturbation equationsand the unequal time orrelators of the seed energy momentumtensor whih are obtained by numerial simulations.3.2 The seed energy momentum tensorSine the energy momentum tensor of the seeds, ��� , does notontribute to the bakground Friedman universe, it is gauge in-variant by itself aording to the Stewart-Walker Lemma [135℄.��� an be alulated by solving the matter equations for theseeds in the Friedman bakground geometry. Sine ��� has nobakground omponent it satis�es the unperturbed \onserva-32



tion" equations. We deompose ��� into salar, vetor and ten-sor ontributions. They deouple within linear perturbation the-ory and it is thus possible to write the equations for eah ofthese ontributions separately. As always (unless noted other-wise), we work in Fourier spae, k is the omoving wave numberand k = jkj. We parameterize the salar (S) vetor (V ) andtensor (T ) ontributions to ��� in the form�(S)00 =M2f� (41)�(S)j0 = iM2kjfv (42)�(S)jl =M2 "(fp + 13k2f�)Æjl � kjklf�# (43)�(V )j0 =M2w(v)j (44)�(V )jl = iM212 �kjw(�)l + klw(�)j � (45)�(T )jl =M2� (�)ij : (46)Here M denotes a typial mass sale of the seeds. In the aseof topologial defets we set M = �, where � is the symmetrybreaking sale [41℄. The vetors w(v) and w(�) are transverse and� (�)ij is a transverse traeless tensor,k �w(v) = k �w(�) = ki� (�)ij = � (�) jj = 0 :From the full energy momentum tensor ��� whih ontains salar,vetor and tensor ontributions, the salar parts fv and f� of aFourier mode are given byikj�0j = �k2M2fv ; (47)�kikj(�ij � 13ÆijÆkl�kl) = 23k4M2f� : (48)On the other hand fv and f� are also determined in terms off� = �00=M2 and fp = �ii=(3M2) by energy and momentum33



onservation, _f� + k2fv + _aa(f� + 3fp) = 0 ; (49)_fv + 2 _aafv � fp + 23k2f� = 0 : (50)One fv is known it is easy to extratM2w(v)j = �0j � ikjM2fv : (51)For w(�)i we use ikj(�lj ��(S)lj ) = �k2M22 w(�)l : (52)Again, w(�)l an also be obtained in terms of w(v)l by means ofmomentum onservation,_w(v)l + 2 _aaw(v)l + 12k2w(�)l = 0 : (53)Finally,M2� (�)ij =�ij �M2 24(fp + k23 f�)Æij � kikjf�� i2(kiw(�)j + kjw(�)i )# : (54)The geometry perturbations indued by the seeds are hara-terized by the Bardeen potentials, �s and 	s, for salar per-turbations, by the potential for the shear of the extrinsi ur-vature, �(s), for vetor perturbations and by the gravitationalwave amplitude, H(s)ij , for tensor perturbations. Detailed de�ni-tions of these variables and their geometrial interpretation aregiven in Ref. [41℄ (see also Appendix A). Einstein's equationsfor an unperturbed osmi bakground uid with seeds relate34



the seed perturbations of the geometry to the energy momentumtensor of the seeds. De�ning the dimensionless small parameter� � 4�GM2 ; (55)we obtain to �rst order in �k2�s= �(f� + 3 _aafv) (56)�s +	s=�2�f� (57)�k2�(s)i =4�w(v)i (58)�H(s)ij + 2 _aa _H(s)ij + k2H(s)ij =2�� (�)ij : (59)Eqs. (56) to (59) would determine the geometri perturbationsif the osmi uid were perfetly unperturbed. In a realisti sit-uation, however, we have to add the uid perturbations whihare de�ned in the next subsetion. Only the total geometrialperturbations are determined via Einstein's equations. In thissense, Eqs. (56) to (59) should be regarded as de�nitions for�s ;	s ;�(s) and H(s)ij .A desription of the numerial alulation of the energy momen-tum tensor of the seeds for global defets and osmi strings isgiven in Chapter 4.3.3 Einstein's equations and the uid equations3.3.1 Salar perturbationsSalar perturbations of the geometry have two degrees of freedomwhih an be ast in terms of the gauge-invariant Bardeen poten-tials, 	 and � [8,87℄. For Newtonian forms of matter, 	 = ��is nothing else than the Newtonian gravitational potential. Formatter with signi�ant anisotropi stresses, 	 and �� di�er. Ingeometrial terms, the former represents the lapse funtion of the35



zero-shear hyper-surfaes while the latter is a measure of their 3-urvature [41℄. In the presene of seeds, the Bardeen potentialsare given by	=	s +	m ; (60)�=�s +�m ; (61)where the indies s;m refer to ontributions from a soure (theseed) and the osmi uid respetively. The seed Bardeen poten-tials are given in Eqs. (56) and (57).To desribe the salar perturbations of the energy momentumtensor of a given matter omponent, we use the gauge invari-ant variables Dg for density utuations, orresponding to theusual density utuation in the 'at gauge', V , for the potentialof peuliar veloity utuations, orresponding to the usual ve-loity potential in the longitudinal gauge and �, a potential foranisotropi stresses (whih vanishes for CDM and baryons). Ade�nition of these variables in terms of the omponents of theenergy momentum tensor of the uids and the metri perturba-tions an be found in Refs. [87℄ or [41℄ and in Appendix A.Subsripts and supersripts , , b or � denote the photons, CDM,baryons and neutrinos respetively.Einstein's equations yield the following relation for the matterpart of the Bardeen potentials [48℄�m= 4�Ga2k2 [�D()g + �D()g + �bD(b)g + ��D(�)g � f4� + 3�+3�+3�b +4��g�+3 _aak�1f43�V +�V +�bVb +43��V�g℄(62)	m=��m � 8�Ga2k2 (p� + p���) : (63)Note the appearane of � = �s+�m on the r.h.s. of Eq. (62). Us-ing the deompositions (60,61) we an solve for � and 	 in termsof the uid variables and the seeds. With the help of Friedman's36



equation, Eqs. (62) and (63) an then be written in the form�= 123 � _aa��2 k2+4x+3x+3xb+4x� [xD()g + xD()g + xD(b)g+x�D(�)g + _aak�1 (4xV + 3xV + 3xbVb+4x�V�) + 23k2  _aa!�2�s℄ (64)	=��� 2�f� �  _aa!2 k�2(x� + x���) : (65)Here we have normalized the sale fator suh that a = 1 today.The density parameters 
� always represent the values of theorresponding density parameter today (Here � stands for  ;  ; bor �.). To avoid any onfusion, we have introdued the variablesx� for the time dependent density parameters,x;�= 
;�
 +
a+ 
ba+ 
� + 
�a4 (66)x;b= 
;ba
 +
a+ 
ba+ 
� + 
�a4 : (67)The uid variables for photons and neutrinos are obtained byintegration over diretions of the salar brightness perturbations,whih we denote by MS(�;k;n) and NS(�;k;n) respetively.They are given in Appendix B.The evolution of CDM perturbations is determined by energyand momentum onservation,_D()g + kV = 0 ; _V +  _aa!V = k	 : (68)During the very tight oupling regime, z � zde, we may negletthe baryon ontribution in the energy momentum onservationof the baryon-photon plasma. We then have37



_D()g + 43kV = 0 ; _V � k14D()g = k(	� �) ; (69)and D(b)g = 34D()g ; Vb = V : (70)The onservation equations for neutrinos are not very useful,sine they involve anisotropi stresses and thus do not lose. Atthe temperatures of interest to us, T � 1MeV, neutrinos have tobe evolved by means of the Liouville equation whih we disussin the next setion.One the baryon ontribution to the baryon-photon uid be-omes non-negligible, and the imperfet oupling of photons andbaryons has to be taken into aount (for a 1% auray of the re-sults, the redshift orresponding to this epoh is around z � 107),we evolve also the photons with a Boltzmann equation. The equa-tion of motion for the baryons is then_D(b)g + kVb=0 ; (71)_Vb +  _aa!Vb=k	� 4a�Tne
3
b [V � Vb℄ : (72)The last term in Eq. (72) represents the photon drag fore in-dued by non-relativisti Compton sattering, �T is the Thomsonross setion, and ne denotes the number density of free eletrons.The sale fator a enters sine our derivative is taken w.r.t onfor-mal time. At very early times, when �Tnea� 1=� , the 'Thomsondrag' just fores Vb = V, whih together with Eqs. (69) and (71)implies the �rst eqn. of (70).An interesting phenomenon often alled 'ompensation' an beimportant on super horizon sales, k� � 1. If we neglet aniso-tropi stresses of photons and neutrinos and take into aountthat O(V ) = O(k�	) and O(Dg) = O(	) for k� � 1, Eqs. (64)and (65) lead to O(�) = O �(k�)2�s � 2�f�� : (73)38



Hene, if anisotropi stresses are relatively small, �f� � �s, theresulting gravitational potential on super horizon sales is muhsmaller than the one indued by the seeds alone. One must bevery areful not to over interpret this 'ompensation' whih isnot stritly related to ausality, but is due to the initial ondi-tion Dg ; V !�!0 0. A thorough disussion of this issue is foundin Refs. [48,23,144℄. As we shall see, for textures �s and �f� areatually of the same order. Therefore Eq. (73) does not lead toompensation, but it indiates that CMB anisotropies on verylarge sales (Sahs-Wolfe e�et) are dominated by the amplitudeof seed anisotropi stresses. Nevertheless, for purely salar or o-herent perturbations, as we shall see f� / (k�)2�s and hene'ompensation' is important.The quantities whih we want to alulate and ompare with ob-servations are the CDM density power spetrum and the peuliarveloity power spetrum todayP (k) = hjD()g (k; �0)j2i and Pv(k) = hjV(k; �0)j2i : (74)Here h� � �i denotes an ensemble average over models. Note thateven though Dg and V are gauge invariant quantities whih donot agree with, e.g., the orresponding quantities in synhronousgauge, this di�erene is very small on sub-horizon sales (of order1=k�) and an thus be ignored.On sub-horizon sales the seeds deay, and CDM perturbationsevolve freely. We then have, like in inationary models [111℄,Pv(k) = H20
1:2m P (k)k�2 : (75)3.3.2 Vetor perturbationsVetor perturbations of the geometry have two degrees of free-dom whih an be ast in a divergene free vetor �eld. A gauge-invariant quantity desribing vetor perturbations of the geome-try is�, a vetor potential for the shear tensor of the f� =onst.g39



hypersurfaes. Like for salar perturbations, we split � into asoure term oming from the seeds given in the previous setion,and a part due to the vetor perturbations in the uid,� = �s +�m : (76)The perturbation of Einstein's equation for �m is [41℄k2�m = 6  _aa!2 [43x! + x! + xb!b + 43x�!�℄ : (77)Here !� is the uid vortiity whih generates the vetor typeshear of the equal time hyper-surfaes (see Appendix A). By def-inition, vetor perturbations are transverse,� � k = �m � k = �s � k = !� � k = 0 : (78)It is interesting to note that vetor perturbations in the geom-etry do not indue any vetor perturbations in the CDM (upto unphysial gauge modes), sine no geometri terms enter themomentum onservation for CDM vortiity,_! + _aa! = 0 ;hene we may simply set ! = 0. This is also the ase for thetightly oupled baryon radiation plasma. But as soon as highermoments in the photon distribution build up, they feel the vetorperturbations in the geometry (see next setion) and transfer itonto the baryons via the photon drag fore,_!b +  _aa!!b = 4a�Tne
3
b [! � !b℄ : (79)The photon vortiity is derived via the integral over the vetortype photon brightness perturbation,MV , using! = V �� (80)40



and V = 316� Z nM(V )d
 ; (81)where the integral is over photon diretions, n (see Appendix B).The vetor equations of motion for photons and neutrinos aredisussed in the next setion.3.3.3 Tensor perturbationsMetri perturbations also have two tensorial degrees of freedom,gravity waves, whih are represented by the two heliity statesof a transverse traeless tensor (see Appendix A). As before, wesplit the geometry perturbation into a part indued by the seedsand a part due to the matter uids,Hij = H(s)ij +H(m)ij : (82)The only matter perturbations whih generate gravity waves aretensor type anisotropi stresses whih are present in the pho-ton and neutrino uids. Numerially one �nds that the e�etof anisotropi stresses of photons and neutrinos ontributes lessthan 1% to the �nal result [46℄, and hene may be negleted bysetting H(m)ij = 0.3.4 Boltzmann equation, polarization and CMB power spetraWhen partile interations are less frequent, the uid approxima-tion is not suÆient, and we have to desribe the given partilespeies by a Boltzmann equation, in order to take into aountphenomena like ollisional and diretional dispersion. In the aseof massless partiles like massless neutrinos or photons, the Boltz-mann equation an be integrated over energy, and we obtain anequation for the brightness perturbation whih depends only on41



momentum diretions [41℄. As before, we split the brightness per-turbation into a salar, vetor and tensor omponent, and wedisuss the perturbation equation of eah of them separately, ??M =MS +MV +MT : (83)The funtion M depends on the wave vetor k, the photon di-retion n and onformal time � . Linear polarization of photonsindued by Compton sattering is desribed by the Stokes pa-rameter Q and U , depending on the same variables [30,31℄. Anexpliit derivation of the Boltzmann equation inluding polariza-tion is presented in Appendix B. Here we just repeat the nees-sary de�nitions and results.The brightness anisotropy M and the non-vanishing Stokes pa-rameters Q and U an be expanded asM(�;k;n)=X̀ 2Xm=�2M(m)` (�; k)0Gm̀(n); (84)Q(�;k;n)� iU(�;k;n)=X̀ 2Xm=�2(E(m)` � iB(m)` )2Gm̀(n):(85)The spin weighted spherial harmonis sGm̀ are desribed in Ap-pendix B. Up to a normalization onstant, the 0Gm̀ oinide withthe usual spherial harmonis. The oeÆients m = 0;m = �1and m = �2 desribe the salar (S), vetor (V ) and tensor (T )omponents respetively. The Boltzmann equation for the oeÆ-ients X(m)` is given by_M(m)` � k " 0�m̀2`� 1M(m)`�1 � 0�m̀+12`+ 3M(m)`+1# =�ne�TaM(m)` + S(m)` (` � m) (86)??We ould in priniple add higher spin omponents to the distribution funtions.But they are not seeded by gravity and sine photons (and neutrinos) interat athigh enough temperatures, they are also absent in the initial onditions.42



_E(m)` � k 24 2�m̀2`� 1E(m)`�1 � 2m`(`+ 1)B(m)` � 2�m̀+12`+ 3E(m)`+135 =�ne�Ta[E(m)` +p6C(m)Æ`;2 (87)_B(m)` � k 24 2�m̀2`� 1B(m)`�1 + 2m`(`+ 1)E(m)` � 2�m̀+12`+ 3B(m)`+135 =�ne�TaB(m)` : (88)where we setS(0)0 = ne�TaM(0)0 ; S(0)1 = ne�Ta4Vb + 4k(	� �);S(0)2 = ne�TaC(0); S(1)1 = ne�Ta4!b;S(1)2 = ne�TaC(1) + 4�; S(2)2 = ne�TaC(2) + 4 _H (89)
and C(m) = 110[M(m)2 �p6E(m)2 ℄. The oupling oeÆients ares�m̀ = vuut(`2 �m2)(`2 � s2)`2 :
In Appendix B) we express the uid variables in terms of integralsof the photon brightness over diretions.The CMB temperature and polarization power spetra are givenin terms of the expansion oeÆientsM(m)` , E(m)` and B(m)` as(2`+ 1)2CXY (m)` = nm8� Z k2dkX(m)` Y (m)�` ; (90)
where nm = 1 for m = 0 and nm = 2 for m = 1; 2, aountingfor the number of modes. Sine B is parity odd, the only non-vanishing ross orrelation spetrum is CTE.43



3.5 NeutrinosAnalogously to the photon brightness perturbation it is useful tointrodue the neutrino one as well, whih we will all N ,N = N (S) +N (V ) +N (T ): (91)Sine the neutrinos are ollisionless during the entire epoh un-der onsideration, they satisfy the ollisionless equations whihare obtained from the Boltzmann equation for the intensity bysetting �T = 0. For simpliity, we expand N not in terms of thefuntions 0G(m)` , but use the more basi approah with Legendrepolynomials.N (S)=X̀(�i)`(2`+ 1)�(S)` P`(�) (92)N (V )=q1��2 �N (V )1 (�) os�+N (V )2 (�) sin�� (93)N (V )1;2 =X̀(�i)`(2`+ 1)�(V )`(1;2)P`(�) (94)N (T )=(1� �2) �N (T )+ os(2�) +N (T )� sin(2�)� (95)N (T )+;�=X̀(�i)`(2`+ 1)�(T )`(+;�)P`(�) : (96)The Liouville equation for the oeÆients �(S;V;T )`� then beomes
_�(S)` � k2`+ 1 �`�(S)`�1 � (`+ 1)�(S)`+1�= 43k(	� �)Æ`;1 (97)_�(V )` � k2`+ 1 �`�(V )`�1 � (`+ 1)�(V )`+1�=4kÆ`;1� (98)_�(T )`;� � k2`+ 1 �`�(T )`�1;� � (`+ 1)�(T )`+1;��=4 _H� : (99)44



3.6 Computing power spetra in seed modelsThe generation of the seeds,e.g. topologial defets during asymmetry breaking phase transition, is an inherently randomproess. The exat seed distribution in our universe is just onerealization and annot be predited. Only statistial properties,expetation values, an be alulated. Yet the soure funtionsto the Boltzmann equation are elements of the seed energy mo-mentum tensor, not their expetation values.In priniple one ould alulate the indued random variablesD()g (k; �0), V(k; �0),M(m)` (k; �0) et for 100 to 1000 realizationsof a given model and determine the expetation values P (k),Pv(k) and C` by averaging. This proedure has been adapted inRef. [2℄ for a seed energy momentum tensor modeled by a fewrandom parameters and in Ref. [50℄ where the CMB anisotropieson large sales have been determined in x-spae by diret line ofsight integration and averaging over several observer positions.In a more realisti alulation of topologial defets, where theseed energy momentum tensor omes entirely from numerial sim-ulations, this proedure is not feasible. The �rst and most impor-tant bottlenek is the dynamial range of the simulation whihis about 40 in the largest (512)3 simulation whih have been per-formed [113,46℄. They need about 1 to 2 Gbyte of RAM and runin about one hour CPU time on a modern work station or PC. Todetermine the C`'s for 2 � ` � 1000 we need a dynamial range ofabout 10,000 in k-spae. This means kmax=kmin � 100000, wherekmax and kmin are the maximum and minimum wave numberswhih ontribute to the C`'s to ahieve and auray of about10%. A dynamial range of 10,000 requires at least a (100; 000)3simulations whih needs about 10,000 Terabytes RAM! Corre-spondingly the CPU time required for suh a simulation is about1000 years.With brute fore, this problem is thus not tratable with present45



or near future omputing apabilities. But there are a series oftheoretial observations whih redue the problem to a feasibleone:As we have seen, for eah wave vetor k given, we have to solvea system of linear perturbation equations with random soures,DX = S : (100)Here D is a time dependent linear di�erential operator, X isthe vetor of the matter perturbation variables spei�ed in theprevious subsetions (photons, CDM, baryons and neutrini; totallength up to 4000), and S is the random soure term, onsistingof linear ombinations of the seed energy momentum tensor.For given initial onditions, this equation an be solved by meansof a Green's funtion (kernel), G(�; � 0), in the formXj(�0;k) = �0Z�in d�Gjm(�0; �;k)Sm(�;k) : (101)We want to ompute power spetra or, more generally, quadratiexpetation values of the formhXj(�0;k)X�m(�0;k0)i ;whih, aording to Eq. (101) are given byhXj(�0;k)X�l (�0;k0)i =�0Z�in d�Gjm(�;k) �0Z�in d� 0G�ln(� 0;k0)� hSm(�;k)S�n(� 0;k0)i : (102)The only information about the soure random variable whihwe really need in order to ompute power spetra are thereforethe unequal time two point orrelatorshSm(�;k)S�n(� 0;k0)i : (103)46



This nearly trivial fat has been introdued by Hindmarsh [69℄and exploited by many workers in the �eld. For example in Ref. [3℄,where deoherene of models with seeds has been disovered,and later in Refs. [113,5,91,48,46℄ and others. The eigenvetormethod disussed below has been introdued in [138℄. (The CMBanisotropy spetrum from osmi texture shown in this paper is,however, inorret.)To solve the enormous problem of dynamial range, one then usesausality, statistial isotropy and 'saling'.Seeds are alled 'saling' if their orrelation funtions C���� de-�ned by ���(k; �)=M2���(k; �) ; (104)h���(k; �)����(k0; � 0)i=C����(k; �; � 0)Æ(k � k0) (105)are sale free; i.e. the only dimensional parameters in C���� arethe variables �; � 0 and k themselves. The Æ-funtion in k-spaeis a simple onsequene of statistial homogeneity. Up to a er-tain number of dimensionless funtions Fn of z = kp�� 0 andr = �=� 0, the orrelation funtions are then determined by therequirement of statistial isotropy, symmetries and by their di-mension. Causality requires the funtions Fn to be analyti inz2. A more detailed investigation of these arguments and theironsequenes is given in Chapter 6. There we also show that sta-tistial isotropy and energy momentum onservation redue theorrelators (105) to �ve suh funtions F1 to F5.In osmi string simulations, energy and momentum are not on-served. Cosmi string loops osillate and emit gravitational waves(see Refs. [146,39℄). They lose their energy by radiation of grav-itational waves and, in 'usps' or tiny wiggles into massive par-tiles [147℄. In this ase 14 funtions of z2 and r are needed todesribe the unequal time orrelators [26℄.Sine analyti funtions generially are onstant for small argu-47



ments z2 � 1, Fn(0; r) atually determines Fn for all values ofk with z = kp�� 0 <� 0:5. Furthermore, the orrelation fun-tions deay inside the horizon and we an safely set them tozero for z >� 40 where they have deayed by about two orders ofmagnitude (see Figs. 4 to 7 in Chapter 5). Making use of thesegeneri properties of the orrelators, we have redued the dynam-ial range needed for our omputation to about 40, whih an beattained with (512)3 simulations feasible on present omputers.Clearly, all orrelations between salar and vetor, salar andtensor as well as vetor and tensor perturbations have to vanish.The soure orrelation matrix C����(k; �; � 0) an be onsidered askernel of a positive hermitian operator in the variables x = k� =zr1=2 and x0 = k� 0 = z=r1=2, whih an be diagonalized:C(x; x0) = Xn �nvn(x)v�n(x0) (106)(the variable k and the spae time indies are supressed in thisand the following expressions). The series (vn) is an orthonormalseries of eigenvetors of the operator C (ordered aording to theamplitude of the orresponding eigenvalue) for a given weightfuntion w. We then have ? ? ?Z C(x; x0)v(n)(x0)w(x0)dx0 = �nv(n)(x) : (107)The eigenvetors and eigenvalues depend on the weight funtionw whih an be hosen to optimize the onvergene speed of thesum (106). For O(N) models, salar perturbations typially need20 eigenvetors whereas vetor and tensor perturbations need �veto ten eigenvetors for an auray of a few perent (see Fig. 8in Chapter 5).? ? ?Here the assumption that the operator C is trae-lass enters. This hypothesis isveri�ed numerially by the fast onvergene of the sum (106).48



Inserting the expansion (106) in Eq. (102), leads tohXi(k; �0)X�j (k; �0)i = Xn �nX(n)i (k�0)X(n)�j (k�0) ; (108)where X(n)i (�0) is the solution of Eq. (100) with deterministisoure term v(n)i ,X(n)j (�0;k) = �0Z�in d�G(�0; �;k)jlv(n)l (x;k) : (109)For the CMB anisotropy spetrum this givesC` = nSXn �(S)n C(Sn)` + nVXn �(V )n C(V n)` + nTXn �(T )n C(Tn)` : (110)C(�n)` is the CMB anisotropy indued by the deterministi sourev(�n), and n� is the number of eigenvalues whih have to be on-sidered to ahieve good auray. Here we have also used thatthe unequal time orrelation matrix ontains unorrelated salar,vetor and tensor bloks.Instead of averaging over random solutions of Eq. (101), we anthus integrate Eq. (101) with the deterministi soure term v(n)and sum up the resulting power spetra. The omputational re-quirement for the determination of the power spetra of one seedmodel with given soure term is thus on the order of nS+nV +nTinationary models. This eigenvetor method has �rst been ap-plied in Ref. [113℄.This ompletes the formal developments needed to ompute stru-ture formation with defets. In the next hapter we disuss thenumerial simulations whih have been performed to obtain theunequal time orrelators of the seed energy momentum tensor.These are then diagonalized and the eigenfuntions are enteredas soures in the system of linear equations derived in this hap-ter. The results from this proedure are desribed in Chapter 5.49



4 Numerial ImplementationIn the previous hapter we have learned that the only inputneeded for the omputation of power spetra and other two pointorrelation funtions are the unequal time orrelators of the de-fet energy momentum tensor. In this hapter we disuss howthey are obtained in pratie. Their general struture will beanalysed in Chapter 6.4.1 Global defets4.1.1 The � model approximationWe onsider a spontaneously broken salar �eld with O(N) sym-metry. If we are not interested in the mirosopial struture ofthe �eld in the viinity of the ore but only in its behaviour onlarge sales, we an fore the �eld to stay on the vauum manifoldwith a Lagrange multiplier � and drop the potential. The bulkpart of the energy of global strings, global monopoles and globaltexture is ontained in the �eld gradient at large distanes of theore and is not a�eted by this approximation.L = ��� � ���+ �(�2 � �2) : (111)Varying the ation with respet to � and � leads to2�+ �� = 0 ; �2 � �2 = 0 : (112)Multiplying the �rst equation with � and using �2 = �2 yields� = (� � 2�)=�2 hene 2� � (� � 2�)�=�2 = 0 : (113)Applying ���� on �2� �2 we �nd (� �2�) = �(��� ����) so that2�+ (��� � ���)�=�2 = 0 :50



Setting � = �=�, we �nally obtain the equation of motion2� + (��� � ���)� = 0 (114)for the �eld � 2 Sn, where n = 1; 2 and 3 for global strings,monopoles and texture respetively. Eq. (114) is the equation ofmotion for the non-linear �-model for a salar �eld on Sn.4.1.2 The energy momentum tensor of the seedsThe energy momentum tensor is given by the variation of theation with respet to the metri. It isT�� = ��� ��� � 12g�� ���� � ���� : (115)The required soure funtions an be diretly derived from thisexpression using (41) to (46). For the salar soures we use�s= 1k2  f� + 3 _aafv! 	s = ��s � 2f� with (116)f�= 12 �_�2 +\(r�)2� (117)fv=�ikjk2 \� _� � �;j� (118)f�=�32 kikjk4  \�;i � �;j � 13Æij\(r�)2! ; (119)where b denotes the Fourier transform (note that �̂�̂ 6= �2 !!).Vetor soures are determined byw(v)j =\_� � �;j � kjk2kl[_� � �;l ; (120)and it is suÆient to alulate the orrelation funtion of one ofthem, e.g. w1, as the transversal harater of w imposeshw(v)i (k; �)w(v)j (k; � 0)i = (kikj � k2Æij)p�� 0W (k�; k� 0):51



For the same symmetry reasons the tensor type orrelators arealso determined by one funtion, F5, alone, see the equation (161)in Chapter 6. Therefore we an again pik one speial index sele-tion to determine F5. Sine F5 does not depend on the diretionof k, we an hoose the speial oordinate system k1 = k2 = 0,leading to F5 = p�� 0hT12(�)T12(� 0)i.4.1.3 The large N limitBefore disussing numerial simulations of global defet, we studythe limit where the number of omponents of the salar �eldbeomes very large [54℄.. As we shall see, in this limit, the singlenon-linear term in the �-model an be replaed by its average,and the equation of motion beomes linear and an be solved.This solution has been found in Ref. [141℄. Using the equation ofmotion (114) in a FLRW metri, 2� = 1=a2( �� � 2 _a=a _� ���),we �nd �� � 2 _aa _� ��� = T �� �: (121)In a �rst step we impose saling on the trae of the energy mo-mentum tensor by setting T �� = T (x)=(a�)2 where T (x) is nowdimensionless. In the large-N approximation, the utuations ofquadrati quantities, like the energy momentum tensor, are oforder 1=N , so we neglet them for the �eld evolution, and wereplae T (x) with its average �T . To solve the resulting equation,we hange into Fourier spae and replae _a=a by �=� , whih is ex-at in perfetly matter (� = 2) and radiation (� = 1) dominateduniverses, and an aeptable approximation otherwise. This leadsto �� + 2�� _� + 0�k2 � �T� 21A � = 0: (122)This equation is solved by�(k; �) = � 1=2��(f1(k) J�(k�) + f2(k) J��(k�)); (123)52



where J� denotes the Bessel funtion of order � and � = �T +(1=2� �)2.The funtions fi(k) are random variables, and we an take themto be Gaussian distributed and unorrelated at all points,Df li (k)fm�j (q)E = CjkjnÆ(k � q)Æij ÆlmN : (124)We disard the solution with negative �, sine it diverges for� ! 0. Furthermore, we hoose the solution starting as whitenoise as funtion of k, leading to n = �2�. Enforing the �model ondition that the �eld annot leave the vauum manifold(D�(x; �)2E = 1) �xes C and requires � = � + 1. The abso-lute normalisation is atually not important for the alulationof CMB anisotropies, sine the utuations will be normalisedto the COBE data points. In this ase C merely determines therequired energy sale of symmetry breaking.Using �(x) � J�(x)=x� as well as '(x) � 32�(x) � J�+1(x)=x��1we an write the solution as�(k; �) = pA� 3=2�(k�)�in(k) (125)and its time derivative as_�(k; �) = pA� 1=2'(k�)�in(k) : (126)It is now easy to derive the energy momentum tensor of the seedsusing the expressions of the last setion. As a worked out example,we take a loser look at f�. The equal time orrelator (ETC) isDf�(k; �)f �� (k0; �)E=A2� 24 Z d3qd3p f'(q�)'(jk � qj�)'(p�)'(j � k0 � pj�)�� 4q(k � q)p(k0 + p)�(q�)�(jk � qj�)�(p�)�(jk0 + pj�)+� 2p(k0 + p)'(q�)'(jk� qj�)�(p�)�(jk0 + pj�)53



�� 2q(k � q)'(p�)'(jk0 + pj�)�(q�)�(jk � qj�)gD�in(q)�in(k � q)�in(p)�in(�k0 � p)E : (127)The expetation value of the initial �elds is given by Eq. (124) andthe requirement that �in be a Gaussian random variable impliesD�in(q)�in(k � q)�in(p)�in(�k0 � p)E= C2Æ(k � k0)A2N [Æ(p+ q) + Æ(p� (q � k))℄ : (128)This allows us to perform the integral over d3p. We introdue thedimensionless variables x � q� and y � k� . To simplify the nota-tion, we replae all ourrenes of an expression like a(x)b(jy�xj)by (ab).Djf 2� jE (y; �)= C22N� Z d3x n('')2 + [x(y�x)℄2(��)2�2[x(y�x)℄('')(��)g ;= �C2N� Z dx d� x2 n('')2 + [xy��x2℄2(��)2�2[xy�� x2℄('')(��)o : (129)In the last equation we performed the integration over one angu-lar variable and introdued � = (x̂ � ŷ).In this way all required unequal time orrelators an be derived.They are shown in Figs. 4 to 7. A more expliit treatment an befound e.g. in [90℄.4.1.4 Numerial simulation of global textureFields with a �nite number of omponents N annot be treatedanalytially. The unequal time orrelators have to be alulatednumerially on a grid. A useful approah for global �eld simula-tion is to minimize the disretized ation [114℄. There one doesnot solve the equation of motion diretly, but use a disretized54



version of the ationS = Z d4x a2(�) "12��� � ��� + �2 ��2 � 1�# ; (130)where � is a Lagrange multiplier whih �xes the �eld to the va-uum manifold (this orresponds to an in�nite Higgs mass). Testshave shown that this formalism agrees well with the omplemen-tary approah of using the equation of motion of a salar �eldwith Mexian hat potential and setting the inverse mass of thepartile to the smallest sale that an be resolved in the simu-lation (typially of the order of 10�35 GeV), but tends to givebetter energy momentum onservation.As we annot trae the �eld evolution from the unbroken phasethrough the phase transition due to the limited dynamial range,we hoose initially a random �eld at a omoving time � = 2�x.Di�erent grid points are unorrelated at all earlier times [115℄.The use of �nite di�erenes in the disretized ation as well asin the alulation of the energy momentum tensor introdue im-mediately strong orrelations between neighboring grid points.This problem manifests itself in an initial phase of non-salingbehaviour, the length of whih varies between 10�x and 20�x,depending on the variable onsidered. It is very important to useresults from the saling regime only (f. Fig. 1).In order to redue the time neessary to reah saling and toimprove the overall auray, one has to hoose the �nite di�er-enes in an optimal way. One possibility is to alulate all valuesin the enter of eah ubi ell de�ned by the lattie. The addi-tional smoothing introdued by this improves energy-momentumonservation by several perent.To alulate unequal time orrelators (UTC), the values of theobservables under onsideration are saved one saling is reahedat time � and then orrelated at all following time steps. Whilethere is some danger of ontaminating the equal time orrelator55



Fig. 1. The ETCs C11(z; 1) = hj�j2i(k�) (panel a) and C22(z; 1) = hj	j2i(k�) (panelb) are shown for di�erent times. In grid units the times are � = 4 (dashed), � = 8(dotted), � = 12 (long dashed), � = 16; 20 (dash dotted, long dash dotted) and� = 24 (solid). Clearly C22 sales muh sooner than C11. To safely arrive in thesaling regime one has to wait until � � 16 and Cij(k� = 0) is best determined at� � 20 but k� < 1.(ETC), whih ontributes most strongly to the C`'s, with non-saling soures, this method ensures that the onstant for k� !0 is determined with maximal preision for the ETCs. This isvery important as the onstants Cij(0; 1) �x the relative size ofsalar, vetor and tensor ontributions of the Sahs-Wolfe partand severely inuene the resulting C`'s. In ontrast, the CMBspetrum seems quite stable under small variations of the shapeof the UTCs.The resulting UTCs are obtained numerially as funtions of thevariables k, � and � with � � � and � �xed. They are linearlyinterpolated to the required range. One then onstruts a her-mitian matrix in k� and k� 0, with the values of k� hosen on alinear sale to maximize the information ontent, 0 � k� � xmax.The hoie of a linear sale ensures good onvergene of the sumof the eigenvetors after diagonalization (see Fig. 8), but still re-tains enough data points in the ritial region, O(x) = 1, wherethe orrelators start to deay. In pratie one hooses as the end-point xmax of the range sampled by the simulation the value atwhih the orrelator deays by about two orders of magnitude,typially xmax � 40. The eigenvetors that are fed into the Boltz-mann ode are then interpolated using ubi splines with the56
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ulation with a grid of not muh more than (512)3 ells whihshould simulate the entire Hubble volume, � (1028m)3, annotresolve this sale by more than 55 orders of magnitude. There-fore, strings are approximated as in�nitely thin, and it an beshown that they obey to a very good approximation the Nambu-Goto ation of fundamental string theory [147℄. Corretions are ofthe order of the string thikness devided by the string urvaturesale, and therefore irrelevant for osmology.Furthermore, the string network needs to loose energy by grav-itational radiation [146,123,39℄ in order to sale. Hene, energymomentum onservation annot be enfored for the defet �eldalone, leading to 14 UTCs insted of only �ve. As the intera-tions of osmi strings are not known, one must also make adho assumptions onerning the deay produts. This hoie hasonsiderable impat on the results [26,120℄.We do not desribe the numerial simulations to evolve osmistrings. Detailed aounts of this problem an be found in the lit-erature [128,147,70,102,148℄. Let us, nevertheless, point out themain problem. It is very diÆult to simulate osmi strings inexpanding spae, due to the large di�erene between the Hubblesale and the sale of small sale struture. Hene, it remainsunlear up to date, whether string simulation in an expandinguniverse an apture enough of the small sale struture, the tinywiggles and loops whih develop due to the string self-interation,to produe meaningful results. On the other hand, string simu-lations in at spae, do not satisfy energy momentum onser-vation of expanding spae. To adress the small sale strutureproblem, most of the reent results in the literature, atually allexept [4,5,7℄, use at spae simulations or semi-analytial meth-ods to alulate the string UTC's. It is not lear to us whihproedure gives the best results, but sine all the obtained CMBspetra disagree signi�antly with observations, this question hassomehow lost its urgeny.As initial on�guration of a string simulation, one usually lays59



down string segments aording to the so alled Vahaspati-Vilenkinalgorithm [146℄. These are then evolved with the Nambu-Gotoequation of motion. The physial problem of the 'deay produt'of osmi strings is related to the numerial problem of smallsale struture: Most string odes �nd that the network devel-ops struture (wiggles, tiny loops) on the smallest sales whihthe simulation an resolve. The phyial sale of these small wig-gles and loops is still unknown. It may even be, that the loopsbeome smaller and smaller due to self-intersetion, until theirsize is of the order of their thikness and they deay into elemen-tary partiles. This piture, whih is in ontrast to the deay intogravity waves, is avoated in Ref. [149℄. There have also been sev-eral attempts to take into aount these wiggles in semi-analytimodels [117℄.
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5 Result5.1 The unequal time orrelatorsAs explained in Chapter 3 to ompute the observable CMB andmatter, power spetra we need the unequal time orrelators ofthe seed energy momentum tensor.More preisely, for the salar part we need the orrelatorsh�s(k; �)��s(k; � 0)i= 1k4p�� 0C11(z; r) ; (131)h�s(k; �)	�s(k; � 0)i= 1k4p�� 0C12(z; r) ; (132)h	s(k; �)	�s(k; � 0)i= 1k4p�� 0C22(z; r) ; (133)as well as C21(z; r) = C�12(z; 1=r). The funtions Cij are analytiin z2. The pre-fator 1=(k4p�� 0) omes from the fat that theorrelation funtions hf�f �� i, k4hf�f ��i and k2hfvf �v i have to beanalyti and from dimensional onsiderations (see Ref. [44℄).The funtions Cij are shown in Fig. 4. Panels (a) are obtainedfrom numerial simulations. Panels (b) represent the same orre-lators for the large-N limit of global O(N)-models (see [141,91℄).In Fig. 5 we show Cij(z; r = 1), and the 'onstant' of the Taylorexpansion for Cij is given as a funtion of r, i.e., Cij(0; r).Vetor perturbations are indued by �(s) whih is seeded by w(v).Transversality and dimensional arguments require the orrelationfuntion to be of the formhw(v)i (k; t)w(v)�j (k; � 0)i = p�� 0(k2Æij � kikj)W (z; r) : (134)Again, as a onsequene of ausality, the funtion W is analyti61
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Fig. 5. On the left the orrelators Cij(z; 1) are shown, while the right �gure depitsCij(0; r) with r = � 0=� . The solid, dashed and dotted lines represent C22 ; C11and jC12j respetively. Panels (a) are obtained from numerial simulations of thetexture model and panels (b) show the large-N limit. A striking di�erene is thatthe large-N value for jC12j is relatively well approximated by the perfetly oherentresult pjC11C22j while the texture urve for jC12j lies nearly a fator 10 lower(from [46℄).Expanding the unequal time orrelators in terms of eigenfun-tions and eigenvetors as explained in Chapter 3, one �nds thatthe expansion with a linear weight atually onverges faster thanone with a logarithmi weight. This is illustrated in Fig. 8 below.In Fig. 9 we also show the equal time orrelators of the energydensity and pressure, veloity and anisotropi stresses of loalosmi strings. It is interesting to note to whih extent the spatialomponents of the energy momentum tensor are smaller than theenergy density. In ontrary to global defets, loal strings providea nearly non-relativisti soure.A soure is alled totally oherent [101,48℄ if the unequal timeorrelation funtions an be fatorized. This means that only oneeigenvetor is relevant. A simple totally oherent approximation,63
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Fig. 8. The sum of the �rst few eigenfuntions of T (x; x) is shown for two di�erentweight funtions, (a) logarithmi, w = 1=x and (b) linear, w = 1. The �rst (longdashed), �rst and seond (short dashed), �rst ten (dotted) and �rst thirty (solid)eigenfuntions are summed up. The open irles represent the full orrelation fun-tion. Clearly, the eigenfuntions obtained by linear weighting onverge muh faster.Here we only show the equal time diagonal of the orrelation matrix, but the samebehavior is also found in the C` power spetrum whih is sensitive to the full orre-lation matrix (from Re. [46℄).
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and eigenfuntions twie, in a pure radiation and in a pure mat-ter universe and interpolate the soure term from the radiationto the matter epoh. Denoting by �m; vm and �r; vr a given pairof eigenvalue and eigenvetor in a matter and radiation universerespetively, we hoose as our deterministi soure funtionv(�)=y(�)q�rvr(k�) + (1� y(�))q�mvm(k�) (137)with, e.g.,y(�)= �eq� + �eq or y(�) = exp(��=�eq) ; (138)or some other suitable interpolation funtion. The e�et of theradiation dominated early state of the universe is relatively unim-portant for the sales of interest for CMB anisotropies and lineargravitational lustering The di�erene between the pure matterera result and the interpolation is very small [46℄. This seemsto be quite di�erent for osmi strings where the utuations inthe radiation era are about twie as large as those in the matterera [127℄. The radiation dominated era has, however, little e�eton the key feature of CMB anisotropies from topologial defets;namely the absene of aousti peaks.In models with osmologial onstant, there is atually a seondbreak of sale invariane at the matter{� transition. There onean proeed in the same way as outlined above. Sine defetsease to sale and disappear rapidly in an exponentially expand-ing universe, the eigenvalues for the � dominated universe allvanish.In Fig. 12 we show the CMB power spetrum from osmi strings.Preditions from di�erent researh groups working on the sub-jet [5,7,26,101,120,117℄ agree only partially. Contrary to globaldefets models, there seems to be a broad peak at rather high` � 400 to 500. The height of the peak is very muh a matter ofdebate. In some work it is ompletely absent [5℄, while in other itis quite high [26,117℄. We an maybe understand this di�erenebetween global and loal defets as being due to the larger dif-69



ferene between the soure funtions in the radiation and matterdominated era: For the global O(N) defets, the ratio betweenthe soures in the two epohs is about 1:2, while for strings it israther in the viinity of 4 [154℄. This di�erene an explain themore prominent peak at high ` for osmi strings. An additionalintriguing di�erene to global defet is the strong domination ofthe energy density over the rest of the energy momentum tensor(see Fig. 9). The dependene of the spetrum on the equation ofstate of the deay produt, pX = wX�X is remarkable.
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Fig. 12. The angular CMB power spetrum of osmi strings, from a simulationby Contaldi, Hindmarsh and Magueijo [26℄. The �gure shows the result for stringsdeaying into a uid obeying the equation of state p = w�. with w = 1=3; 0:1; 0:01respetively. The old data overlaid to the graph is to be ignored.
A feature whih the two lasses of defets have in ommon isdeoherene whih smears out all seondary peaks. Furthermore,osmi strings seem to su�er as well from insuÆient power onlarge sales in the dark matter. The lear sequene of aous-ti peaks reently observed [106,65,93℄ rules out any seeds withstrongly non-linear evolution, suh as O(N) (with low N), bothfor global and loal gauge theories, as well as any other non-linearmehanism for seeding osmi perturbations!70



5.2 non-GaussianityAn interesting di�erene between struture formation with topo-logial defets and inationary models is also that the latter havegenerially Gaussian perturbations while the former don't. Evenif the defet energy momentum tensor would be Gaussian ini-tially, non-linear evolution indues non-Gaussianities. (Reently,however, a model leading to Gaussian utuations from osmidefets has been investigated [6℄.)Even if the �elds themselves would be Gaussian (whih they arenot), the energy momentum tensor, whih is quadrati in the�elds, would obey a �2-distribution. But the �-model onditionPNi=1(�i)2 = 1 annot be satis�ed if the �elds �i are Gaussianrandom variables. In the large N model, the O(N)-model in thelimit N ! 1, the energy momentum tensor is a in�nite sumof variables ���i���i whih all obey the same distribution. Thislarge N model is nearly Gaussian as a onsequene of the entrallimit theorem. The fat that the variables �i have to satisfaythe normalization ondition however implies that the variables���i���i are not statistially independent.Clearly, O(N)-models with N > 4 omponents do not lead totopologial defets in 3-dimensional spae, but in the large N -limit the equations of motion an be solved analytially and, aswe have already seen, the model is very useful to study ertainfeatures of O(N) defets. The fat that non-Gaussianity beomesweaker as N beomes larger, indiates that osmi strings areprobably the most non-Gaussian defets and textures are theleast non-Gaussian.For defets to be non-Gaussian, means that their energy momen-tum tensor does not obey Gaussian statistis. Therefore ertainredued higher oder moments do not vanish. It is not evidenthow to �nd the best observable to loate the non-Gaussianity.Some suggestions for variables whih might be useful in the ase71



of defets have been proposed in Refs. [53,58℄. Furthermore, agiven observational variable like,e.g. , the integrated Sahs-Wolfee�et, may be the sum of many non-Gaussian but equally dis-tributed ontributions and hene be very losely Gaussian due tothe entral limit theorem.Unfortunately, it is not known how strong non Gaussian featuresare in the CMB or in the dark matter distribution of topolog-ial defet models. It is also not lear on whih sales they arestrongest. Due to the arguments indiated above, we expet os-mi strings to be most non-Gaussian. A well distinguished non-Gaussian feature in CMB anisotropies from osmi strings is theKaiser-Stebbins e�et [79℄. This is a disoninuity in the CMBtemperature due to a moving string between the observer andthe CMB. Even though this e�et is easily obtained analytiallyfor a straight osmi string, it is diÆult to get a handle on it in astring network of many bent and twisted strings whih also on-tain small sale struture. One expets the Kaiser-Stebbins e�etto be relevant for the anisotropies on about ar-minute sale.Old partial results on non-Gaussianity from numerial simula-tions (see e.g. . [114,50℄) are probably strongly a�eted by �nitesize e�ets and not very reliable. On the other hand, with themore suessful method to ompute power spetra just by de-termining the unequal-time two point distribution of the defets,one loses all information about higher order orrelations and thusabout non-Gaussianity. Sine the known defets are suh a bad �tto the present CMB data, nobody has been suÆiently motivatedto study and solve the diÆult problem of the non-Gaussianitywhih defets may indue in the CMB anisotropies or in thematter distribution. A semi-analyti study of the bi-spetrum,the third moment of CMB anisotropies for osmi strings an befound in Ref. [58℄.We know that also non-linear Newtonian lustering indues non-Gaussianities. The redued n-point funtions in the matter dis-tribution due to non-linear lustering sale like D2n�2, where D72
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numerially and by analytial arguments in Refs. [113,5,2,46℄ and[44℄. Due to tensor and vetor ontributions, even assuming per-fet oherene (see Fig. 11, top panel), the total power spetrumdoes not inrease from large to small sales. Deoherene leads tosmoothing of osillations in the power spetrum at small salesand the �nal spetrum has a smooth shape with a broad, lowisourvature 'hump' at ` � 100 and a small residual of the �rstaousti peak at ` � 350. There is no struture of peaks at smallsales. The power spetrum is well �tted by the following fourth-order polynomial in x = log `:`(`+ 1)C`110C10 = 1:5� 2:6x+ 3:3x2 � 1:4x3 + 0:17x4 : (139)The e�et of deoherene is less important for the large-N model,where osillations and peaks are still visible (see Fig 3, bottompanel). As argued before, this is due to the fat that the non-linearity of the large-N limit is only in the quadrati energymomentum tensor. Sine deoherene is inherently due to non-linearities, we expet it to be stronger for lower values of N .In Fig. 13 we plot the global texture C` power spetrum for dif-ferent hoies of osmologial parameters. The variation of pa-rameters leads to similar e�ets like in the inationary ase, butwith smaller amplitude. At small sales (` � 200), the C`'s tendto derease with inreasing H0 and they inrease when a os-mologial onstant 
� = 1� 
m is introdued. Nonetheless, theamplitude of the anisotropy power spetrum at high `s remainsin all ases on the same level like the one at low `s, withoutshowing the substantial peak found in inationary models and inthe data. The absene of aousti peaks is a stable predition ofglobal O(N) models. The models are normalized to the full CMBdata set, whih leads to slightly larger values of the normalizationparameter than pure COBE normalization. An avarage value fordi�erent hoies of osmologial parameters is � = 4�G�2 � 1:6We ompare the texture results with the three best urrent ex-74



perimental data sets from Boomerang-98 [106℄, Maxima [93℄ andDASI [65℄. We take in to aount the alibration unertainty of10% for Boomerang and of 5% for Maxima and DASI. We alsoinlude the COBE dataset using Lloyd Knox's RADPak pak-ages [159℄.No matter how preisely an experiment will measure the CMBsky, the result will be always a�eted by the intrinsi statistisof the perturbations, i.e. the osmi variane. In the reovery ofthe power spetra of the above experiments, the temperaturedistribution is often assumed to be Gaussian. Deviation fromGaussianity ould lead to an enhanement of the osmi vari-ane, whih an be as large as a fator of 7 (see [99℄). Inevitablytherefore, the quoted error-bars in the CMB power spetrumould be in priniple underestimated by the assumption of theGaussian statisti. This e�et is, however only relevant for rela-tively low `s. Furthermore, preliminarly statistial analysis of theMaxima map [155℄ have found no-evidene for non-Gaussianities.Keeping this aveat in mind, but missing a more preise alterna-tive, we indiate the minimal, Gaussian error alulated aord-ing to the published data. The numerial seeds taken from [46℄are assumed to be about 10% aurate. In Fig. 14 we plot theBoomerang and DASI data together with the theoretial predi-tions for a texture model with h = 0:65,
� = 0:625, 
dm = 0:315and 
b = 0:06, and the orresponding inationary model withns = 0:98 whih gives a best �t to the data. All of the exper-iments detet a very lear �rst peak at ` � 200 whih is in-ompatible with all O(N) models [43,113,124,46℄ as well as withthe osmi string results [26,117,120℄ In Table 1, we report the�2 values from a omparison of the CDM-texture model witheah experiment, separately. As we an see, while in reasonableagreement with the large angular sale data from the COBE ex-periment, the new data at intermediate and small angular salesfrom BOOMERanG, DASI and MAXIMA rule out the modelwith high signi�ane. 75



Experiment Data Points �2COBE 24 28COBE+B98 43 317B98 19 221COBE+MAXIMA 36 119MAXIMA 12 32COBE+DASI 33 246DASI 9 75Table 1Topologial defets versus CMB data. While in reasonable agreement with theCOBE data, the power spetrum inferred from textures is in strong disagree-ment with the present intermediate and small angular sale observations. TheBOOMEranG data alone, in partiular, rule out the model at extremely high sig-ni�ane.In addition, the data shows indiations of a series of peaks point-ing to oherent aousti osillations. If the evidene for this peaksequene strenghtens one new data beomes available, it willprovide strong evidene against non-linear mehanisms for thegeneration of perturbations. Furthermore, it will enable us toplae stringent limits on the relative amounts of isourvature andadiabati ontributions to the perturbations. We present a moregeneral disussion in the next hapter.Finally, we ompare E- and B-type polarisation indued by de-fets with the result of an inationary model with equal ampli-tude of salar and tensor temperature utuations in Fig. 15 . Dueto the amount of vetor perturbations present, it is not surpris-ing that B-type polarization has signi�antly higher amplitudefor defets. Furthermore, the isourvature shift of the 'aoustipeaks' and deoherene are also visible in the polarisation signal.5.4 Matter power spetraThe �rst serious attempts to ompute the matter distribution insenarios with topologial defets were done for osmi strings [104℄.76
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Fig. 15. Power spetra of temperature (T), eletri type polarization (E) and mag-neti type polarization (B) for global strings, monopoles, textures and an O(N)salar �eld with N > 4 are shown. For omparison, also the orresponding spetrain a standard CDM model with T=S = 1 (whih maximizes the B omponent) isplotted. All defet models predit a muh larger omponent of B polarization onsmall angular sales (from Seljak, Pen and Turok [124℄).77



But due to the problems inherent in osmi string simulations,the auray of these results may well be less that a fator of twoor three.The situation is di�erent for global defets. There, the �rst a-urate matter spetra have been omputed in Ref. [113℄. Thiswork, whih underestimated the vetor and tensor ontributionto CMB anisotropies, still had the wrong normalization. This wasorreted later in [50,113,46℄. For a COBE mormalized globaltexture model, the total mass utuation �R in a ball of ra-dius R = 8h�1Mp, is about �8 = (0:44 � 0:07)h (the erroroming from the CMB normalization) in a at universe with-out osmologial onstant (see Refs. [113,46℄. From the observedluster abundane, one infers �8 = (0:50 � 0:04)
�0:5 [51℄ and�8 = 0:59+0:21�0:16 [95℄. These results, whih are obtained with thePress-Shehter formula, assume Gaussian statistis. We thushave to take them with a grain of salt, sine we do not knowhow non-Gaussian utuations on luster sales are in the tex-ture model. Aording to Ref. [56℄, the Hubble onstant lies inthe interval h ' 0:73�0:06�0:08. Hene, in a at CDM osmol-ogy, taking into aount the unertainty of the Hubble onstant,the texture senario predits a reasonably onsistent value of �8.However, as disussed in Refs. [2℄, [113℄ and [46℄, unbiased globaltexture models are unable to reprodue the power of galaxy lus-tering at very large sales, >� 20h�1 Mp. In order to quantifythis disrepany we ompare the predition of the linear matterpower spetrum with the deorrelated linear power spetrum ofthe PSCz survey from [136℄ and [66℄ in Fig. 17. Clearly, the tex-tures model without a osmologial onstant provides a bad �t tothe large sale data. Inluding a osmologial onstant improvesthe agreement between the shape of the theoretial spetrum andthe data. However, the required bias is too high, b � 6 and themodel fails to math the observed value of �8. We further testthis disrepany by omparing the theoretial preditions withthe results from a wide number of infrared (Refs. [55℄,[137℄) and78



optially-seleted (Refs. [29℄, [98℄) galaxy redshift surveys, andwith the real-spae power spetrum inferred from the APM pho-tometri sample (Ref. [10℄). All the results are in rough agreementwith the PSCz omparison: For h = 0:5 and 
� = 0:8 the shape ofthe texture power spetrum �ts the data well, but the bias is veryhigh. The only exeption is the APM data, the shape of whihannot be �tted with the texture spetrum. In Table 2 we reportfor eah survey the best osmologial parameter (h;
�) withinthe limited ones whih have been analysed, and the best value ofthe bias parameter obtained by �2-minimization. We also indi-ate the value of �2 (not divided by the number of data points)and the number of data points. The bias parameter strongly de-pends on the data onsidered. This is not surprising, sine alsothe atalogs are biased relative to eah other. A more detaileddisussion of this analysis is found in Ref. [46℄.The power spetra for the large-N limit and for the oherentapproximation are typially a fator 2 to 3 higher (see Fig. 16),and the biasing problem is alleviated for these ases. For 
� = 0we �nd �8 = 0:57h for the large-N limit and �8 = 0:94h forthe oherent approximation. This is no surprise sine only onesoure funtion, 	s, the analog of the Newtonian potential, seedsdark matter utuations and thus oherene always enhanes theunequal time orrelator. The dark matter Greens funtion is notosillating, so this enhanement translates diretly into the powerspetrum.Models whih are anti-oherent in the sense de�ned in Setion re-due power on Sahs-Wolfe sales and enhane the power inthe dark matter. Anti-oherent saling seeds are thus the mostpromising andidates whih may ure some of the problems ofglobal O(N) models.The analysis desribed here does not take into aount the e�etsof non-linearities and redshift distortions. Redshift distortions inthe texture ase should be less important than in the inationaryase sine the peuliar veloities are rather low (see next para-79
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R �v (R) �v h = 0:5 h = 1:0 
� = 0:810 494 170 145 205 8620 475 160 100 134 7830 413 150 80 98 7040 369 150 67 78 6550 325 140 57 65 6160 300 140 50 56 57Table 3Bulk veloities: Observational data from [36℄ and theoretial preditions. �v es-timates the observational unertainty. The unertainties on the theoretial predi-tions are around � 30%. The models 
� = 0 with h = 0:5 and h = 1 as well as
� = 0:8; h = 0:5 are given.As shown in Table 3, the COBE normalized texture model pre-dits too low veloities on large sales when ompared with PO-TENT results. More reent measurements of the bulk ow leadto somewhat lower estimates like �v(R) � (230 � 90) at R =60h�1Mp (see Ref. [62℄), but a disrepany of about a fatorof 2 in the best ase remains. Inluding a osmologial onstanthelps at large sales, but dereases the veloities on small sales.Similar results are obtained in models with osmi strings. There,however, details depend on assumption about the uid into whihstring loops deay. For loops deaying into radiation, models withosmi strings have even less power on 50h�1Mp.This omparison of models with data shows that U(1) osmistrings and global O(N) models are learly ruled out by presentlarge sale struture data. In the next hapter we shall studywhether generalizations or mixed models may survive.
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6 GeneralizationsSo far we have studied some spei� models of topologial defetsand we have found that they annot reprodue the observed largesale struture of the universe. Even if they basially lead to aHarrison{Zel'dovih spetrum on large sales, the 'details' justdo not �t. The isourvature nature of the indued perturbationstogether with the high amplitude tensor and espeially vetorontributions, lead to relatively high amplitude of utuationson very large sales. Therefore, the COBE{normalized aousti'peaks' and the dark matter power spetrum typially are toolow. In addition, deoherene smears out the anyway too lowseondary peaks in the CMB anisotropy spetrum.In this hapter we �rst study the question whether this feature isgeneri or just happens to our in the spei� models whih wehave analyzed in the preeding hapters. Then we want to investi-gate whether mixed models with inationary perturbations and adefet omponent might �t the data better than pure inationaryperturbations.6.1 Generi properties of the unequal time orrelation funtionsWe start by deriving some generi properties of power spetraindued by topologial defets. As we have seen in Chapter 2,the resulting perturbation power spetra are fully determined bythe un-equal time orrelators of the defet energy momentumtensor.The main properties whih we shall use to desribe the defet or-relators are ausality, statistial homogeneity and isotropy andsaling. Sine the nature of the defets resulting as a 'topologi-al relits' from a phase transition does not enter diretly in thisanalysis, we speak of 'saling ausal seeds', seeds denoting anynon-uniformly distributed form of energy whih provide a pertur-83



bation to the homogeneous bakground uid. In �rst order per-turbation theory they evolve aording to the unperturbed (ingeneral non-linear) equations of motion. For simpliity, we as-sume the seeds to be oupled to the osmi uid only via gravity.A ounter example to this are the U(1) osmi strings disussedbefore. As we have seen, the string CMB anisotropy power spe-trum, espeially the height of the aousti peak, depends verysensitively on the details of the oupling of string seeds to mat-ter [26,120℄. For unoupled seeds the energy momentum tensor isovariantly onserved. To determine power spetra or other ex-petation values whih are quadrati in the osmi perturbations,we just need to know the unequal time orrelation funtions ofthe seed energy momentum tensor [44,46℄,h���(k; �)����(k0; � 0)i =M4C����(k; �; � 0)Æ(k � k0) ; (141)where M is a typial energy sale of the seeds (e.g. the sym-metry breaking sale for topologial defets), whih determinesthe overall perturbation amplitude. Here we de�ne Fourier trans-forms with the normalizationf̂(k)= 1pV Z d3xf(x) exp(ikx) ; (142)f(x)= pV(2�)3 Z d3kf̂(k) exp(�ikx) : (143)Seeds are ausal, ifC����(x; �; � 0) � 1M4 h���(y; �)����(y + x; � 0)ivanishes for jxj > �+� 0; and they are saling, if C depends on noother dimensional parameter than k, � and � 0. From saling weonlude that for purely dimensional reasons, we an write theorrelations funtions in the formC����(k; �; � 0) = 1p�� 0F����(p�� 0 � k; � 0=�) ; (144)84



where F���� is a dimensionless funtion of the four variables zi �p� 0�ki and r � � 0=� , whih is analyti in zi.We also require the seed to deay inside the horizon, whih implieslimk�!1 C����(k; �; � 0) = limk� 0!1 C����(k; �; � 0) = 0 : (145)Furthermore, sine the seeds interat with the osmi uid onlygravitationally, � satis�es ovariant energy momentum onserva-tion, ���;� = 0 : (146)With the help of these four equations, we an, for example, ex-press the temporal omponents, �0� in terms of the spatial ones,�ij. The seed orrelations are thus fully determined by the spa-tial orrelation funtions Cijlm. Statistial isotropy, saling andsymmetry in i; j and l;m as well as under the transformationi; j; k; � ! l;m;�k; � 0 require the following form for the spatialorrelation funtions:Cijlm(k; �; � 0) =1p�� 0 [zizjzlzmF1(z2; r) +(zizlÆjm + zizmÆjl + zjzlÆim + zjzmÆil)F2(z2; r) +zizjÆlmF3(z2; r)=r + zlzmÆijF3(z2; 1=r)r++ÆijÆlmF4(z2; r) + (ÆilÆjm + ÆimÆjl)F5(z2; r)℄ ; (147)where the funtions Fa are analyti in z2 � �� 0k2, and for a 6= 3they are invariant under the transformation r! 1=r, Fa(z2; r) =Fa(z2; 1=r). The positivity of the power spetra Cijij(k; �; �) =hj�ijj2i � 0 leads to a series of positivity onditions for the fun-tions Fa:0�F5(z2; 1) ; (148)0�F4(z2; 1) + 2F5(z2; 1) ; (149)85



0� z2F2(z2; 1) + F5(z2; 1) ; (150)0� z4F1(z2; 1) + 4z2F2(z2; 1) + 3F5(z2; 1) ; (151)0� z4F1(z2; 1) + 2z2(F3(z2; 1) + 2F2(z2; 1))+F4(z2; 1) + 2F5(z2; 1) : (152)Sine Cijlm is the Fourier transform of a real funtion,Cijlm(k; �; � 0)� = Cijlm(�k; �; � 0) : (153)Hene the ansatz (147) implies that the funtions Fa(z2; r) arereal. Furthermore, deay inside the horizon (ondition (145))yields limz2r!1Fa(z2; r) = limz2=r!1Fa(z2; r) = 0 : (154)In addition, analytiity implies that the funtions Fa do not di-verge in the limit z ! 0, thuslimz!0Fa(z2; r) = Aa(r)with Aa(r) = Aa(1=r) for all a 6= 3 :As an example, we show some of these funtions in the large Nlimit of global salar �eld seeds (see Chapter 4). In Figs. 1 and 2we present the funtions F5(z2; r) and F2(z2; r).The symmetry under the transition r ! 1=r is learly visible.Also the onditions that Fa ! 0 if either z ! 1 or r ! 0 orr ! 1 whih follows from Eq. (154) is evidently satis�ed. For�xed z the funtions osillate with a frequeny whih grows withz. Sine the amplitude deays rapidly, these osillations are onlyvisible in the log-plots. The orrelations always deay like powerlaws, never exponentially. 86
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Fig. 20. The funtions jFi(z; 1)j are shown left. The zeros are visible as spikes inthe log-plot (Further below, at z � 30, also F1 passes through zero.). Right, thefuntions jAi(r)j = jFi(0; r)j are shown. As disussed in the text, all of them exeptA3 are symmetrial under r ! 1=r.6.1.1 Salar, vetor and tensor deomposition and CMB anisotropiesThe energy momentum tensor of seeds an be split into salar,vetor and tensor perturbations, sine the time evolution of eahof these omponents is independent. Furthermore, due to statisti-al isotropy, the salar, vetor and tensor modes are unorrelated.We use the deomposition of �ij given in Chapter 3, Eqs. (41-46) The funtions F1 to F5 determine the orrelations: To workout the orrelation funtions we use also Eqs. (47,48) and (51,52)as well as (54). Using these identities and the ansatz (147), oneeasily veri�eshfp(�)w�i (� 0)i= hf�(�)w�i (� 0)i = hfp(�)� �ij(� 0)i = 0 (155)hf�(�)� �ij(� 0)i= hwi(�)�jl(� 0)i = 0 (156)hfp(�)f �p (� 0)i= 13p�� 0 [2F5(z2; r) + 3F4(z2; r)+z2(F3(z2; r)=r + F3(z2; 1=r)r) +43z2F2(z2; r) + 13z4F1(z2; r)℄ (157)88



hf�(�)f ��(� 0)i= 1p�� 0k4 [3F5 + 4z2F2 + z4F1℄ (158)
hfp(�)f ��(� 0)i =�p�� 0[13z2F1(z2; r) + 43F2(z2; r) + rF3(z2; 1=r)℄ (159)hwi(�)w�j (� 0)i =4k4p�� 0 [F5 + z2F2℄(k2Æij � kikj) (160)h�ij(�)� �lm(� 0)i =1p�� 0F5[ÆilÆjm + ÆimÆjl � ÆijÆlm + k�2(Æijklkm +Ælmkikj � Æilkjkm � Æimklkj � Æjlkikm � Æjmklki) +k�4kikjklkm℄ : (161)It is interesting to note that although Cijlm is analyti, the or-relation funtions of the salar, vetor and tensor omponents, ingeneral, are not. The reason for that is that the projetion op-erators onto these omponents are not analyti [44℄. This is im-portant. It implies, e.g., that the anisotropi stresses in generalhave a white noise and not a k4 spetrum as erroneously on-luded in [101,72℄. The salar anisotropi stress potential thusdiverges on large sales, hjf�j2i / 1=(�k4) for k� � 1. A re-sult whih is also obtained in the large-N limit and in numerialsimulations of O(N) models. The power spetrum of the salaranisotropi stress potential f� is analyti if vetor and tensorperturbations are absent, F5 = F2 = 0. In the generi situation,F5(z = 0; r = 1) = A5(1) 6= 0. ? ? ??Another situation where f� has a white noise spetrum is thease of perfetly oherent seeds [45℄, in other words ifCijlm(k; �; � 0) = Aij(k; �)A�lm(k; � 0): (162)? ? ??Even though the potential f� and thus also the Bardeen potential 	 (see Eq.(166)) diverge for k� ! 0, the physially relevant (measurable) quantities like ���and R�� stay perfetly �nite. 89



The fat that as well hfpf �p i as hfpf ��i are white noise implies thatalso hf�f ��i = �jhfpf ��ij2=hfpf �p i must behave like white noiseand thus F5 / z4 and F2 / z2 on large sales. This an alsobe obtained by using the analyti properties of the orrelatorsh�0�����i and energy momentum onservation [37℄.Generially, we expet the following relation between salar, ve-tor and tensor perturbations of the gravitational �eld on super-horizon sales, x � k� � 1: (The equations for the salar, vetorand tensor gravitational potentials in terms of f:, w and �ij aregiven in Chapter 3.)hj��	j2i� 12�2�k4 A5(1) (163)hj�ij2i� 16�2�k2 A5(1) (164)hjHij j2i�4�2� 3A5(1) : (165)If the large sale CMB anisotropies were solely indued by superhorizon perturbations, this ould be translated into a ratio be-tween the salar, vetor and tensor ontributions to the C`'s onlarge sales, ` <� 50. However, sine the main ontribution to theCMB anisotropies is indued at horizon rossing, x = 1 (see be-low) the above relations annot be translated diretly and we anjust learn that one expets, in general, ontributions of the sameorder of magnitude from salar, vetor and tensor perturbations.We want to disuss in some detail the CMB anisotropies induedfrom salar perturbations. From� + 	 = �2�f� ; (166)we see that even if � has a white noise spetrum due to 'ompen-sation' [48℄, this generially leads to a k�4 spetrum for 	 andfor the ombination ��	 whih enters in Eq. (167) below.This �nding is in ontradition with [101,72℄, whih predit a90



white noise spetrum for 	, but it is not in onit with the Har-rison Zel'dovih spetrum of CMB utuations whih has beenobtained numerially in [113,50,4℄. This an be seen by the follow-ing simple argument: Sine topologial defets deay inside thehorizon, the Bardeen potentials on sub-horizon sales are dom-inated by the ontribution from dark matter and thus roughlyonstant. The integrated Sahs Wolfe term then ontributes onlyup to horizon sales. Therefore, using the fat that for defetmodels Dg and V are smaller than the Bardeen potentials onsuper-horizon sales, we obtain(�T=T )`(k)jSW � (��	)(k; xde)j`(x0 � xde)+ 1Zxde (�0 �	0)(k; x)j`(x0 � x)dx ; (167)where x = k� and prime stands for derivative w.r.t. x. The lowerboundary of the integrated term roughly anels the ordinarySahs Wolfe ontribution and the upper boundary leads, tok3hj(�T=T )`(k)j2ijSW ��2[3F5(1) + 4F2(1) + F3(1)℄j 2̀(x0); (168)a Harrison-Zel'dovih spetrum. The main ingredients for thisresult are the deay of the soures inside the horizon as well assaling, the rest follows for purely dimensional reasons.The parameter spae of generi ausal salar seed models pro-vided by the �ve funtions F1 to F5 (of two variables) is stillenormous and is rather impossible to investigate. For a realistimodel, the parameter spae is even larger due to the radiation-matter transition whih breaks sale invariane: the seed fun-tions an be di�erent in the radiation and in the matter era. Forglobal O(N) defets this di�erene turns out not to be very im-portant (less than about 20% [46℄) it may, however, go to fatorsof two and more for osmi strings [127℄.91



6.2 Mimiking inationNeil Turok has onstruted a model with saling ausal seedswhih perfetly reprodues the CMB anisotropy spetrum of in-ationary models [139℄. Other synthesized ausal seed modelswith various heights of the aousti peaks are disussed in [48,45℄.Spergel & Zaldarriaga argued that ausal seeds an neverthelessbe distinguished from inationary models by the indued polar-ization [130℄. In their argument they however use that the orre-lator hf�f�i be white noise. As we have seen, this is only orretfor purely salar or perfetly oherent seeds. Therefore, allowingfor vetor and tensor ontributions, as well as for deoherene,one an in priniple irumvent the Spergel & Zaldarriaga argu-ment. However, the fat that seeds notoriously lead to too lowamplitude aousti peaks, limits very strongly the allowed ve-tor and tensor ontributions whih enhane the CMB anisotropyspetrum in the Sahs-Wolfe, but not in the aousti peak re-gion. Furthermore, the smearing out of the aousti peaks in-dued by deoherene is not observed in the data, limiting theallowed amount of deoherene onsiderably.We restrit the following disussion to 'perfetly oherent' modelswith purely salar perturbations. We parameterize the seeds byh	s(k; �)	�s(k; � 0)i= �2p�� 0k4P1(z; r) (169)h�s(k; �)��s(k; � 0)i= �2p�� 0k4P2(z; r) (170)h	s(k; �)��s(k; � 0)i= �2p�� 0k4P3(z; r) : (171)Perfet oherene then impliesP3(z; r) = �rP1(pz2r; 1)P2(qz2=r; 1) (172)Due to the absene of vetor and tensor perturbations, the sum92



� + 	 / f� is suppressed by a fator z2 on large sales, z �1 [44℄. In a �rst attempt we simply set 	 = ��, whih impliesP1 = P2 = �P3 � P .We disuss two families of models (see [47℄).Family ITo enhane the aousti peak, we use seeds whih are larger inthe radiation era than in the matter era.Pr(z; 1)= t1 + (bz)6 (173)Pm(z; 1)= 11 + (bz)6 ; (174)where here the subsripts r and m indiate the radiation and mat-ter era respetively. The parameters t and b are varied to obtainthe best �t and the amplitude � is determined by the overall nor-malization.Family IIThe seond family of models is inspired by Ref. [139℄, whih stud-ies spherial exploding shells with � + 3p / Æ(r � A�). In termsof the soure funtions de�ned in Chapter 3, this model is har-aterized byf�+3fp= 1�� 1=2 sin(Ak�)Ak�fv= E(�)k2� 3=2 3C2 24os(Ck�)� sin(Ck�)Ck� 35with � = (_a=a)� and E = (4 � 2=�)=(3 � 12�). The funtionsf� and f� are then determined by energy momentum onserva-tion, Eqs. (49,50). The funtion E is hosen suh that the powerspetrum of f� is white noise on super horizon sales, a onditionwhih is required for purely salar ausal seeds as we have seenin the previous setion. This leads to the Bardeen potentials93



�= �k2 (f� + 3�� fv) ; (175)	=��� 2�f� : (176)Here the seed funtions are atually not given as random variablesbut as square-roots of power spetra, and one has always to keepin mind that we assume perfet oherene. Of ourse one an alsoregard Eqs. (175,176) as mere de�nitions withP1(z; 1)= �k4	2=�2 ; (177)P2(z; 1)= �k4�2=�2 ; (178)P3(z; 1)= �k4	�=�2 = �qP1(z; 1)P2(z; 1) : (179)With a somewhat lengthy alulation one an verify that E ishosen suh that f� / onst. for z � 1 and the funtions Pi(z; 1)are analyti in z2 = (k�)2. This family of models is desribed bythe parameters A and C, whih have to satisfy 0 < A; C � 1 forausality. Also here one an hoose di�erent amplitudes for thesoure funtions in the radiation and matter era by introdutionof the additional parameter t 6= 1.Seeds generially produe isourvature perturbations. For a atuniverse, this implies a position of the �rst peak at ` � 350, whihis de�nitely inompatible with the reent CMB observations (seealso [116℄, [52℄). However, the tight onstraints on the atnessof the universe obtained from CMB data analysis are based onthe assumption of adiabati primordial utuations. Using thisloophole, it is possible to onstrut losed �-dominated isour-vature models whih have the �rst aousti peak in the observedposition.For a given seed-model, the position of the �rst aousti peakis determined primarily by the angle subtended by the aoustihorizon �a at deoupling time, �de. The angle under whih agiven omoving sale � at onformal time �de is seen on the sky94



is given by �(�) = �=�(�0 � �de), where
�(y) = 8>>>>>>><>>>>>>>: sin(y) if K > 0sinh(y) if K < 0y if K = 0 :is the omoving angular diameter distane (K denotes the ur-vature of 3-spae). As the harmoni number ` is inversely pro-portional to the angle �, this yields `peak ' R`atpeak where R =�ata =�a and `atpeak is the peak position in a at model with thesame value of 
mh2. In terms of osmologial parameters one�nds (see Ref. [16℄ or [47℄, a fator 1=2 is missing in the formulaof [16℄), R = 12vuut 
mj
K j�(�0 ��de):An interesting point is that for 
m ! 0 the quantity R dependsvery sensitively on 
�. Thus, we an have important shifts in thepower spetrum, R � 0:6 say, with relatively small deviationsfrom atness (
m = 0:3, 
� = 0:9, 
K = �0:2). In Ref. [16℄ theauthors have shown that the simple presription ` ! R` repro-dues the CMB power spetra for urved universes within a fewperent. On lines of onstant R, CMB power spetra are nearlydegenerate. This simple presription an be used to resale theat spetrum. Furthermore, one has to asertain that the valueof h2
m used in the spetrum alulation agrees roughly with thevalue preferred by the best �t value of R and the super-novae on-straint [121℄, whih an be ast in the form 
m ' 0:75
�� 0:25.h2
m determines the time of equal matter and radiation andthus inuenes the early integrated Sahs-Wolfe e�et, whih on-tributes to the spetrum right in the region of the �rst peak. Wetherefore get a better approximation if we use the orret valuefor 
mh2. 95



The results from an analysis of family I are shown in Figs. 21and 22 (long dashed lines). The best �t model is shown. Clearly,even though we an hange the osmologial parameters to �t the�rst aousti peak, the seond and third peaks are also shifted bythis proedure and an no longer be �tted. The osmologial pa-rameter R is now �xed by CMB anisotropy measurements due tothe measured inter-peak distane. This situation was still slightlydi�erent with the 'old' Boomerang and Maxima data [35,67℄ forwhih this model ould still provide a reasonable �t [47℄. in ad-dition, the shifted �rst peak is too narrow to �t the data well.The 'best �t' model orresponds to the parameters t = 2:2; b =1=9; 
m = 0:35 and R = 0:53. It has a value of �2 = 96, whih,for 13 points and 4 parameters (t, b, R and the normalization),exludes it at more than 99:8% .l. if Gaussian statistis are as-sumed.

Fig. 21. The CMB temperature anisotropy spetrum `(` + 1)C(T )` for our best �tmodel of family I (long dashed) and family II (solid) is ompared with the new B98data. Family I model is losed, 
 � 1:2 it has problems �tting anything. The familyII model is at and is in good agreement with the data (�2 = 4=9), we �tted only` � 700. A standard inationary spetrum with the same osmologial parametersas the family II model (h = 0:65; h2
b = 0:019; 
dm = 0:35; 
� = 1�
m) is alsoindiated (dotted). 96



Fig. 22. The CMB polarization spetrum C(E)` s for our best �t model of family I(long dashed) and family II (solid) is ompared with a standard inationary spe-trum with the same parameters as above (dotted). The family I model predits alarger polarization signal in the band 50 � ` � 500. On the ontrary, the lak ofintermediate sale polarization at ` � 200 in the family II model is learly visible.A muh better �t an be ahieved by the models of family II.The best �t model of this family has �2 = 4:0 for 13 pointsand 5 parameters (A; C; t; R and the normalization) and is ingood agreement with the data (see Fig. 21, solid line). The modelshown orresponds to the best �t parameters A = 0:9; C =0:8; t = 0:9; and R = 1. In this model whih is at and ausal,the �rst peak in the polarization spetrum is suppressed, as hasbeen noted in Ref. [130℄ (see Fig. 22, solid line).We an therefore onlude that generi ausal saling seed modelsfor struture formation an reprodue the reent CMB anisotropydata [35,67℄. To ahieve this agreement, we have suppressed ve-tor and tensor perturbations and have assumed perfetly oherentutuations. We believe that it is quite improbable that topolog-ial defets from a GUT phase transition have suh a behavior.Nevertheless, there might be some other sale-invariant ausalphysial mehanism (e.g. some spherially symmetri 'neutrinoexplosions', see Ref. [139℄) leading to seeds of this or similar type.97



Clearly, we only have a satisfatory model of struture formationif also the physial origin of the 'seeds' is lari�ed.6.3 Mixed modelsIn this setion we want to disuss the possibility of ombiningtopologial defets with primordial, inationary perturbations.There are at least two important reasons why suh an analysisis interesting. First of all, as we saw in the previous hapters,the preditions based on topologial defet models for the CMBpower spetra are dramatially di�erent from what is expeted inthe standard inationary model. This means that, in priniple,the two ontributions an be disentangled. Seondly, this analysisontributes in a phenomenologial but physially motivated wayto the disussion, about the model dependene of the values ofosmologial parameters derived from aurate CMB data. Ina-tionary models leading to a mixture of inationary perturbationsand defets whih both ontribute to the CMB anisotropies havebeen developed e.g. in Refs. [78,32,83℄ and others. A similaranalysis, but with osmi string and with an older CMB dataset,an be found in [27℄. A mixture of global defets and inationaryperturbations has also been onsidered in [19℄.We onsider an initial utuation spetrumwith salar initial per-turbations given by their spetral index ns, in addition to topo-logial defets whih formed at some symmetry breaking tem-perature T determining the amplitude of the seed perturbations.For de�niteness we take the defets to be osmi texture. It isreasonable to assume that the inationary utuations and thoseindued by topologial defets are not orrelated and thereforethe resulting perturbation spetra an be added in quadrature.We set C` = 24 1(1 + r)C Ì + r(1 + r)CD̀35ACCOBE10 (180)98



for the CMB anisotropy, where A is the pre fator in units ofCCOBE10 , CI10 = CD10 = 1 and the parameter r gives the relativeamplitude of textures/ination at ` = 10. We let vary the osmo-logial parameters as follows: 
m = 0:015 to 1:0; 
b = 0:015 to0:2; 
� = 0:0 to 1:0 and h = 0:25 to 0:95. We restrit the analysisto at universes. We vary the spetral index of the primordial in-ationary perturbations within the range ns = 0:50 to 1:50. Thetheoretial inationary models are omputed using the publilyavailable mbfast program [125℄ and are ompared with the re-ent Boomerang-98 [106℄, DASI [65℄ and MAXIMA-1 [93℄ results.The power spetra from these experiments were estimated in 19,12 and 10 bins respetively, spanning the range 25 � ` � 1000.For the DASI and MAXIMA-I experiments, we use the pub-li available orrelation matries and window funtions. For theBOOMERanG experiment, we assign a at window funtion ineah bin `(`+1)C`=2� = CB, we approximate the signal CB to bea Gaussian variable, and we onsider � 10% orrelations betweenneighboring bins. The likelihood for a given osmologial modelis then de�ned by �2lnL = (C thB � CexB )MBB0(C thB0 � CexB0) whereMBB0 is the Gaussian urvature of the likelihood matrix at thepeak. We onsider 10%, 4% and 5% Gaussian distributed ali-bration errors for the BOOMERanG-98, DASI and MAXIMA-1experiments respetively. We also inlude the COBE data usingLloyd Knox's RADPak pakages [159℄.In Fig. 23 we plot the obtained likelihood distribution for the pa-rameter r, after marginalization over the remaining 'nuisane' pa-rameters and as funtion of di�erent external priors. The presentCMB data plus an external Gaussian prior on the value of theHubble onstant h = 0:65� 0:2 gives r < 2:6 at 95% .l.. Hene,we annot exlude a substantial admixture of topologial de-fets from CMB data alone. Adding strong onstraints on thebaryon density parameter from big bang nuleosynthesis 
bh2 =0:020�0:004 gives r < 2:1. Finally, ombining the CMB data withLSS observation by inluding a onstraint �8
0:5m = 0:50 � 0:05gives r < 1:6, always at 95% .l.. As we an see, even assuming99



quite restritive priors, the present CMB data allow a ontribu-tion from textures as big as r � 1. Furthermore, models withnon-zero r are in slightly better agreement with the data, butthere is no signi�ant evidene for non-vanishing r.The main result of this analysis is that urrent mirowave bak-ground data do not exlude a dominant ontribution from tex-tures on large sales, and marginally favor a signi�ant fration.It is interesting to study how textures an a�et the onstraintson the remaining osmologial parameters. Marginalizing over
m; 
�; h and 
b. Assuming the external priors h = 0:65� 0:2and 
bh2 = 0:020 � 0:002, we obtain the likelihood ontoursshown in Fig. 24 (left panel) in the r{ ns parameter spae. Thereis a degeneray between the amplitude of the texture omponentand the spetral tilt. A blue tilt (ns > 1) is found to be ompatiblewith a larger textures ontribution.If we instead marginalize over 
m; 
�; nS, without assuming ex-ternal priors from big bang nuleosynthesis, we �nd the ontoursshown in Fig. 24 (right panel) in the r { 
bh2 plane. Withoutthe BBN onstraint, the ontribution of textures modes an beeven larger, and there is learly a degeneray along the r �
bh2diretion.The best �t spetrum with 
m = 0:175; 
� = 0:825; h =0:75; 
b = 0:045; ns = 1:02; r = 0:9 together with a 'onor-dane' �t, 
m = 0:3; 
� = 0:7; h = 0:65; 
b = 0:04; ns = 1; r =0 are shown in Fig. 25.
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7 ConlusionIn this review we have disussed the role of topologial defetsfor osmi struture formation. Even though the basi idea seemsnatural and intriguing, we have seen that struture formationwith global O(n) defets and (loal) osmi strings is ruled outalready by the CMB anisotropy data alone. Due to the isour-vature nature of the perturbations and due to the importane ofvetor and tensor perturbations, defets do not indue the aous-ti peaks visible in present data. Furthermore, non-linearities inthe defet evolution tend to deohere, smear out, the peak stru-ture. Nevertheless, generi ausal seeds, whih are dominated bysalar perturbations and have nearly no deoherene, may mimithe CMB anisotropy spetrum of inationary models. Suh mod-els, however, do ertainly not represent topologial defets forwhih non-linearity and therefore deoherene is one of the ba-si ingredients. Furthermore, suh models ould be distinguishedby their polarization spetrum. Models where both, ination andtopologial defets play a role for struture formation, suh thatthe large sale CMB anisotropies from both omponents are ofomparable amplitude, annot be exluded with present data.
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APPENDIXA De�nitions of all gauge-invariant perturbation variablesIn this Appendix we give preise de�nitions of all the gauge-invariant perturbation variables used in the text. These de�ni-tions, their geometrial interpretation and a short derivation ofthe perturbation equations an be found in Refs. [41,87℄. We re-strit the analysis to the spatially at ase, K = 0. The generalase an be found in the referenes above. We de�ne the per-turbed metri by g = �g + a2h ; (A.1)where �g denotes the standard Friedman bakground, a is the salefator and h denotes the metri perturbation.A.1 Salar perturbationsSalar perturbations of the metri are of the formh(S)=�2A(d�)2 + 2ik�1Bkjd�dxj + 2(HL + 13HT )Æijdxidxj�2k�2HTkikjdxidxj : (A.2)Computing the perturbation of the Rii urvature salar and theshear of the equal time slies, we obtainÆR = 4a�2k2R with R = HL + 13HT (A.3)� = a�(kikjk2 � 13Æji )dxi 
 �j; with � = 1k _HT � B : (A.4)The Bardeen potentials are the ombinations105



�=R� ( _a=a)k�1� (A.5)	=A� k�1[( _a=a)� � _�℄ : (A.6)They are invariant under in�nitesimal oordinate transformations(gauge transformations). In longitudinal gauge de�ned by B =HT = 0, the variable � represents the perturbation of the spatialmetri while 	 is the perturbation of the dt2 term, the lapsefuntion.To de�ne perturbations of the most general energy momentumtensor, we introdue the energy density � and the energy ux uas the time-like eigenvalue and normalized eigenvetor of T �� ,T �� u� = ��u� ; u2 = �1 :We then de�ne the perturbations in the energy density and en-ergy ux �eld by � = �(1 + Æ) ; (A.7)u = u0�t + ui�i ; (A.8)u0 is �xed by the normalization ondition, u0 = a�1(1� A) and� is the homogeneous bakground energy density.. In the 3{spaeorthogonal to u we de�ne the stress tensor by��� � P ��P � �T �� ; (A.9)where P = u
u+ g is the projetion onto the sub{spae of TMnormal to u. It is � 00 = � 0i = � i0 = 0 :The perturbations of pressure and anisotropi stresses an beparameterized by� ji = �p[(1 + �L)Æ ji + � ji ℄ , with �ii = 0 ; (A.10)106



where �p is the bakground pressure. For salar perturbations weset u0=(1�A) ; u(S)ju0 = �ikjk vand�(S)ij =(�k�2kikj + 13Æij)� :Studying the behavior of these variables under gauge transforma-tions, one �nds that the anisotropi stress potential � is gaugeinvariant. Another gauge invariant ombination from the mattervariables alone is � = �L � 2swÆ : (A.11)� is proportional to the divergene of the entropy ux and van-ishes for adiabati perturbations [49℄. A gauge invariant veloityvariable is the shear of the veloity �eld,�(Sm)ij = (k�2kikj � 13Æij)a3V , with V = v � k�1 _HT :(A.12)There are several di�erent useful hoies of gauge invariant den-sity perturbation variables,Ds= Æ + 3(1 + w)( _a=a)k�1� (A.13)Dg= Æ + 3(1 + w)R = Ds + 3(1 + w)� (A.14)D=Ds + 3(1 + w)( _a=a)k�1V : (A.15)In this work we mainly use Dg. Here w = p=� denotes the en-thalpy. Clearly, these matter variables an be de�ned for eahmatter omponent separately. For ideal uids like CDM or thebaryon-photon uid long before deoupling, anisotropi stressesvanish and �L = (2s=w)Æ, where s is the adiabati sound speed.Also salar perturbations of the photon brightness, �(S) are notgauge invariant. To de�ne the brightness we �rst onsider the one107



partile photon distribution funtionf(x;p) = �f(�; p) + F (�;x;p) ;where �f is just the Bose-Einstein distribution. The bakgroundLiouville equation requires that �f be a funtion of the redshiftorreted momentum v = ap only. The brightness perturbation isthen the momentum integral of F , whih depends on the photondiretion, position and time�(n;x; �) = 4��� Z dpp3F (p;x; �) : (A.16)This an be deomposed in salar vetor and tensor ontributions,� = �(S) + �(V ) + �(T ) :It has been shown [41℄ that the ombinationM(S) = �(S) + 4R+ 4ik�1njkj� (A.17)is gauge invariant. This is the variable whih we use here. In otherwork[73℄ the gauge invariant variable � �M+� has been used.Sine � is independent of the photon diretion n this di�erenein the de�nition shows up only in the monopole, C0. But learly,as an be seen from Eq. (A.17), also the dipole of �(S), C1, isgauge dependent.The brightness perturbation of the neutrinos is de�ned the sameway and is not repeated here.A.2 Vetor perturbationsVetor perturbations of the metri are of the formh(V ) = 2Bjdxjdt+ ik�1(klHj + kjHl)dxldxj ; (A.18)108



where B and H are transverse vetor �elds. The simplest gaugeinvariant variable desribing the two vetorial degrees of freedomof metri perturbations is �,�j = k�1 _Hj � Bj : (A.19)Vetor anisotropi stresses are gauge invariant. They are of theform �(V )lj = ik�1(kj�l + kl�j) : (A.20)The vetor degrees of freedom of the veloity �eld are ast in thevortiityul;j � uj;l = ia(kj!l � kl!j) with !j = vj � Bj : (A.21)Vetor perturbations of the photon brightness are gauge-invariant.To maintain the notation onsistent we denote them byM(V ) ��(V ).A.3 Tensor perturbationsWe de�ne tensor perturbations of the metri byh(T ) = 2Hijdxidxj ; (A.22)where Hij is a transverse traeless tensor �eld.The only tensor perturbations of the energy momentum tensorare anisotropi stresses, �(T )ij = �ij : (A.23)Again for notational onsisteny tensor perturbations of the pho-ton brightness are denotedM(T ) � �(T ).109



Clearly, all tensor perturbations are gauge-invariant (there are notensor type gauge transformations).
B Boltzmann equation and polarizationThe relativisti Boltzmann equation for the photon distributionfuntion is of the formp���f � �i��p�p� �f�pi = C[f ℄; (B.1)where f(t;x;p) is the one-partile distribution funtion on themass bundle Pm = f(p; x) 2 TMjg(x)(p; p) = �m2g and C[f ℄ isthe ollision integral whih desribes interations. The left handside of (B.1) requires the partiles to move along geodesis in theabsene of ollisions. (For a thorough treatment of the kinetiapproah in general relativity see e.g. [134℄ or [142℄ and referenestherein.)B.1 The ollisionless ase, momentum integralsLet us �rst onsider the situation where ollisions are negligi-ble, C[f ℄ = 0. The unperturbed Boltzmann equation then im-plies that f be a funtion of v = ap only. Setting f = �f(v) +F (�;x; v;n), where n denotes the momentum diretions, leadsto the perturbation equation��F � ni�iF = vd �fdv hniA;i � ninj �Bi;j � _Hij�+HLi : (B.2)To derive (B.2) we have used p2 = 0. The Liouville equation forpartiles with non-vanishing mass an be found in Ref. [41℄.110



The ansatzf(x;p) = �f 0�g(3)(p;p) 12T (x;n) 1A = �f 0� vT (x;n)1A (B.3)with T (x;n) = T (�) + �T (x;n), and where g(3) is the spatialpart of the metri, leads tof = �f � vd �fdv�TT : (B.4)Note that in terms of the brightness perturbation, { de�ned inAppendixA,{ = 4���a4 1Z0 Fv3dv we have �TT = 14{ : (B.5)Comparing this with equation (B.2), we obtain��  �TT !+ ni�i  �TT ! =� hniAji � �Bijj � _Hij�ninj +HLi : (B.6)The fat that gravitational perturbations of Liouville's equationan be ast entirely into temperature perturbations of the originaldistribution is not astonishing. This is just an expression of grav-ity being \ahromati", i.e. independent of the photon energy.We now deompose (B.6) into salar, vetor and tensor ompo-nents. Sine omponents with spin higher than 2 are not souredby the right hand side of equation (B.6) and sine they are sup-pressed at early times, when ollisions are important, we negletthem.For the salar ontribution to �T=T we obtain from (B.6) (inFourier spae) 111



��  �TT !(S) + in`k`  �TT !(S) =� "niAi + ninjkikj �B � _H�+HL + 13k2 _H# : (B.7)This equation is not manifestly gauge-invariant. However, de�n-ing 14M(S) =  �TT !(S) +HL + 13k2H + in`k` � _H �B� ; (B.8)it redues to ��M(S) + �kM(S) = 4i�k(��	); (B.9)where � and 	 are the Bardeen potentials and we have set � =njkj=k. Sine the right hand side of (B.9) is gauge invariant, theleft hand side must be so as well and we onlude that M(S) isa gauge-invariant variable (a diret proof of this, analyzing thegauge transformation properties of the distribution funtion, anbe found in [41℄).14M(S) oinides with the salar temperature utuations up a toa gauge dependent monopole and dipole ontribution.The vetor and tensor ontributions to �T=T are gauge invariantby themselves and we denote them by 14M(V ) and 14M(T ). In theabsene of ollisions, they satisfy the equations_M(V ) + i�kM(V )=�4i�nmk�(V )m (B.10)_M(T ) + i�kM(T )=4n`nm _Hm`: (B.11)The omponents of the energy momentum tensor are obtainedby integrating the seond moments of the distribution funtion112



over the mass shell,T �� = ZPm(x) p�p�f(p; x)�(x; p) ; (B.12)
with the invariant measure �(x; p) = pj det(g)jp0 d3p. One �ndsD()g = 14� Z M(S)d
 = �(S)0 =M(0)0 ; (B.13)V ()= 3i16� Z �M(S)d
 = 34�(S)1 = 14M(0)1 ; (B.14)�()=�98� Z  �2 � 13!M(S)d
 = 3�(S)2 = 35M(0)2 ; (B.15)�()=0 ; (B.16)V (V )= 14� Z nM(V )d
 (B.17)= 13 ��(V )1;0 + �(V )1;2 ; �(V )2;0 + �(V )2;2 ; 0�= �13p2 �M(+1)1 +M(�1)1 ; i(M(+1)1 �M(�1)1 ); 0� ;�(V )= 32� Z �nM(V )d
 (B.18)=�6i5 ��(V )1;1 + �(V )1;3 ; �(V )2;1 + �(V )2;3 ; 0�=p65 �i(M(+1)2 +M(�1)2 );M(+1)2 �M(�1)2 ; 0� ;��(T )ij �= 34� �Z ninjM(T )d
� = 0BBBBBBB���(T )+ �(T )� 0�(T )� �(T )+ 00 0 0

1CCCCCCCA ; (B.19)
with �(T )i = 235 �7�(T )0;i + 10�(T )2;i + 3�(T )4;i �and �(T )+ =�p35p2 �M(+2)2 +M(�2)2 � ;113



�(T )� =�p3i5p2 �M(+2)2 �M(�2)2 �Here, we have also expressed the result in terms of the multipolemoments de�ned by the expansions (B.60) and (B.52) for a wavevetor k pointing in z-diretion..The expressions for the neutrino uid perturbations in terms ofN are idential.B.2 Collisions, polarizationLet us now turn to the ollision term. Just before the proessof reombination during whih the uid desription of radiationbreaks down, the temperature is � 0:4 eV. The eletrons andnulei are non-relativisti and the dominant ollision proess isnon-relativisti Thomson sattering.Thomson sattering depends also on the polarization of the in-oming radiation �eld. It is therefore neessary to treat polar-ization. This is usually done by introduing the Stokes parame-ters [77,89,103,22℄:For a harmoni eletro-magneti wave with assoiated eletri�eld E(x; t) = (�1E1 + �2E2) eipn � x�i!t ; (B.20)where n, �1 and �2 form an orthonormal basis and the omplex�eld amplitudes are parameterized as Ej = ajeiÆj , the Stokesparameters are given byI=a21 + a22 (B.21)Q=a21 � a22 (B.22)U =2a1a2 os(Æ2 � Æ1) (B.23)V =2a1a2 sin(Æ2 � Æ1): (B.24)114



I is the intensity of the wave (whose perturbation M has inter-ested us so far), while Q is a measure of the strength of linearpolarization (the ratio of the prinipal axis of the polarizationellipse). U and V give phase information (the orientation of theellipse). V also gives the amplitude of irular polarization. Fornon-relativisti Thomson sattering V is ompletely deoupledand (sine it vanishes at early times) is therefore never gener-ated.As Q and U vanish in the bakground, perturbations annot ou-ple to them (sine suh terms are 2nd order), and the equationorresponding to (B.7) for Q and U beome (negleting satter-ing) �� (Q;U) + in`k`(Q;U) = 0: (B.25)The di�erential ross setion of Thomson sattering for a pho-ton with inident polarization �(i) sattering into the outgoingpolarization �(s) � �0 is [77℄d�d
 = 38��T �����(s)�(i)���2 : (B.26)
Fig. B.1. De�nition of the angles and vetors for Thomson sattering in the (n; �2)plane.It is often onvenient to introdue the two `partial' intensitiesI1 � a21 = (I+Q)=2 and I2 � a22 = (I�Q)=2. A wave sattered inthe (n; �2) plane (see �gure B.1) by an angle � has the intensitiesI(s)1 = 3�T8� I(i)1I(s)2 = 3�T8� I(i)2 os2 �; (B.27)115



or, expressed in terms of the Stokes parameters,0BBB� I(s)Q(s)1CCCA = 3�T16� 0BBB�1 + os2 � sin2 �sin2 � 1 + os2 �1CCCA0BBB� I(i)Q(i)1CCCA : (B.28)A rotation in the (�1; �2) plane doesn't hange the intensity ofthe wave, but it hanges Q and U toQ0=Q os(2�) + U sin(2�) (B.29)U 0=�U sin(2�) +Q os(2�) : (B.30)

Fig. B.2. De�nition of the angles and vetors for Thomson sattering in the generalase. The polarization vetors are oriented like in �gure B.1.To determine the ross setion that a given 'initial' wave(I(i); Q(i); U (i)) propagating in diretion n be sattered into awave (I(s); Q(s); U (s)) with diretion n0, we need to go through thefollowing steps (we will use the plane (y; z) as referene plane,see �gure (B.2) for de�nitions of the angles and vetors):(1) Rotate around n suh that the plane (n;n0) turns into theplane (nz). One needs to apply the rotation (B.29,B.30) for� = � to the Stokes parameters.(2) Rotate the new plane (n;n0) around z into the refereneplane (y; z). This operation does not inuene the inoming116



Stokes parameters..(3) Now we are in the known ase of (B.27) and (B.28). Henewe an apply the sattering matrix.(4) We then rotate the sattering plane bak around z into theold (z;n0) plane. This does not hange the sattered Stokesparameters.(5) Finally we rotate around n0 by the angle �0 to reah the orig-inal state. To do this, we have to apply the rotation matrix(B.29,B.30) again, but now for � = �0.Following the steps outlined above, we reover the sattering ma-trix in the basis (I1; I2; U) given in equations (B.32) - (B.35) (seealso [22℄). V is ompletely deoupled from the other parametersand follows an evolution whih is independent of the rest. Heneby starting with V (t � tde) = 0 it will stay zero and an benegleted. The sattering matrix P , whih determines the (nonvanishing) sattered Stokes parameters from the initial ones,0BBBBBBB� I(s)1I(s)2U (s)
1CCCCCCCA = �T4�P 0BBBBBBB� I(i)1I(i)2U (i)

1CCCCCCCA (B.31)
is then given byP = �P (0) + q1� �2q1� �02P (1) + P (2)� ; (B.32)where

P (0) = 34 0BBBBBBB�2(1� �2)(1� �02) + �2�02 �2 0�02 1 00 0 0
1CCCCCCCA ; (B.33)
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P (1) = 34 0BBBBBBB� 4��0 os(�0 � �) 0 2� sin(�0 � �)0 0 0�4�0 sin(�0 � �) 0 2 os(�0 � �)
1CCCCCCCA ; (B.34)

P (2) = 340B� �2�02 os[2(�0 � �)℄ ��2 os[2(�0 � �)℄ �2�0 sin[2(�0 � �)℄��02 os[2(�0 � �)℄ os[2(�0 � �)℄ ��0 sin[2(�0 � �)℄�2��02 sin[2(�0 � �)℄ 2� sin[2(�0 � �)℄ 2��0 os[2(�0 � �)℄1CA : (B.35)As we are in an isotropi situation, we will perform all the alu-lations in a speial oordinate system with k k ẑ and n;n0 as inFig. B.2. Clearly the results are independent of this oordinatehoie.The matrix R onneting (I1; I2; U) with (I;Q; U) is given by0BBBBBBB� I1I2U
1CCCCCCCA = 0BBBBBBB� 1=2(I +Q)1=2(I �Q)U

1CCCCCCCA = 12 0BBBBBBB�1 1 01 �1 00 0 2
1CCCCCCCA0BBBBBBB� IQU

1CCCCCCCA � R0BBBBBBB� IQU
1CCCCCCCA :(B.36)To alulate the ollision term inluding polarization , we hangeinto the (I1; I2) basis. For eah of the two intensities � 2 f1; 2gwe then have the ollision term given byC[f (�)℄ = df (�)+d� � df (�)�d� ; (B.37)where f (�)+ and f (�)� denote the distribution of photons in thepolarization state � sattered into respetively out of the beamdue to Thomson sattering.In the matter (baryon/eletron) rest frame, whih we indiate bya prime, we know thatdf (�)0+dt0 (p;n) = �Tne4� Z P �Æ(n;n0)f (Æ)0(p0;n0)d
0 ;118



where ne denotes the eletron number density and P �Æ is the 2�2upper left orner of the normalized Thomson sattering matrix(B.32). In the baryon rest frame whih moves with four veloityu, the photon energy is given byp0 = p�u� :We denote the photon energy with respet to a tetrad adaptedto the sliing of spae-time into f� = onstantg hyper{surfaesby p : p = p�n� ; with n = a�1[(1� A)�� + Bi�i℄ ;The lapse funtion and the shift vetor of the sliing are given by� = a(1 +A) and � = �Bi�i . In �rst order,p0 = ap(1 +A)� apniBi ;and to zeroth order pi = apni. Furthermore, the baryon fourveloity has the form u0 = a�1(1 � A) ; ui = u0vi up to �rstorder. This yields p0 = p�u� = p(1 + ni(vi � Bi)) :Using this identity and performing the integration over photonenergies, we obtain� d�(�)+ (n)d� 0 =a��Tne h1 + 4ni(vi �Bi)+14� Z �(Æ)(n0)P �Æ (n;n0)d
0# :Photons whih are sattered leave the beam with the probabilitygiven by the Thomson ross setion (see e.g. [97℄)df (�)�dt0 = �Tnef (�)0(p0;n) ;119



so that we �nally haveC(�)0= 4��a4 Z dp0B�df (�)+dt0 � df (�)�dt0 1CA p3 = 12�Tne[4ni(vi � Bi)� �(�)+ 14� Z �(Æ)(n0)P �Æ (n;n0)d
0℄ : (B.38)By setting C(M) = C(1)+C(2) and C(Q) = C(1)�C(2) we transformthe ollision integral bak to the normal stokes parameters. Theterm for U has the same form as the one for Q, just with theorresponding matrix elements in the integral. The Boltzmannequation then �nally beomes (setting E � (M; Q; U) and forthe at ase, � = 0):_M+ i�kM = 4i�k(��	+ nm�(V )m ) + 4n`nm _Hm`+a�Tne ��M� 4i�Vb + 4n`!b;` + Z d
0P �1 E 0�� (B.39)_Q+ i�kQ = a�Tne ��Q+ Z d
0P �2 E 0�� (B.40)_U + i�kU = a�Tne ��U + Z d
0P �3 E 0��; (B.41)where we have to use the sattering matrix transformed into the(M; Q; U) basis, P = PS + PV + PT (B.42)withP (S)=R�1P (0)R (B.43)= 38 0BBB�3� �2 � �02 + 3�2�02 (1� 3�2)(1� �02)(1� �2)(1� 3�02 3(1� �2)(1� �02)1CCCA (B.44)PV =q1� �2q1� �02R�1P (1)R (B.45)120



= 32q1� �2q1� �02 0BBBBBBB���0C ��0C ��S��0C ��0C ��S�0S �0S C
1CCCCCCCA (B.46)PT =R�1P (2)R (B.47)= 380B� (1� �2)(1 � �02)CT �(1 � �2)(1 + �02)CT 2(1 � �2)�0ST�(1 + �2)(1 � �02)CT (1 + �2)(1 + �02)CT �2(1 + �2)�0ST�2�(1 � �02)ST 2�(1 + �02)ST 4��0CT 1CA (B.48)with C = os(�� �0), S = sin(�� �0) andCT = os(2(�� �0)), ST = sin(2(�� �0)). The parts PS; PV ; PTof P desribe the sattering of the salar, vetor and tensor on-tribution to E respetively.The funtions M, Q and U depend on the wave vetor k, thephoton diretion n and onformal time � . We hoose for eahk-mode a referene system with z-axis parallel to k. For salarperturbations we ahieve in this way azimuthal symmetry | theright-hand side of the Boltzmann equation and therefore also thebrightnessM(S) depend only on � = (k̂ �n) and an be expandedin Legendre polynomials. The right-hand side of the Boltzmannequation also determines the azimuthal dependene of vetor andtensor perturbations. One an ontinue with this approah, butthe resulting equations for Q and U and espeially also theirpower spetra depend expliitly on the oordinate system. There-fore, we prefer an approah whih is inherently ovariant underrotation.B.3 Eletri and magneti polarizationSine the Stokes parameters expliitly depend on the oordinatesystem, and Eqs. (B.40) and (B.41) transform in a rather ompli-ated way under rotations of the oordinate system. A method toharaterize CMB polarization due to non-relativisti Thomsonsattering, whih is more onvenient than the Stokes parameters121



sine its transformation properties are very simple, has been de-veloped a ouple years ago [126,156,80,81,71℄. A detailed deriva-tion of this method goes beyond the sope of this report. Herewe just repeat the de�nitions and the main results. We setT = (M; Q+ iU;Q� iU) (B.49)In terms of this three omponent vetor the ollision integralabove an we written (in vetor form) asC[T ℄=a�Tne[�T +  14� Z d
0M0 + (n � vb); 0; 0!+ 110 2Xm=�2 Z d
0P (m)(n;n0)T 0 (B.50)From Eqs. (B.32) to (B.36) one an determine the satteringmatrix for the vetor TP (m) = 0BBBBBBB� Y m02 Y m2 �q322Y m02 Y m2 �q32�2Y m02 Y m2�p6Y m02 2Y m2 32Y m02 2Y m2 3�2Y m02 2Y m2�p6Y m02 �2Y m2 32Y m02 �2Y m2 3�2Y m02 �2Y m2
1CCCCCCCA (B.51)where sY m0l = sY m�l (n0) and sY ml = sY m�l (n) are the spin-weightedspherial harmonis [107,81,75℄.We now deompose the Fourier omponents of the temperatureanisotropyM and the polarization variables Q and U asM=X̀ 2Xm=�2M(m)` 0Gm̀; (B.52)Q� iU =X̀ 2Xm=�2(E(m)` � iB(m)` )2Gm̀(n): (B.53)Here m = 0 is the salar mode, m = �1 are the vetor andm = �2 are the tensor modes. The funtions sGm̀ are losely122



related to the spin weighted harmonis sY m` :sGm̀(n) = (�i)`vuut 4�2`+ 1 sY m` (n)The evolution equations in term of these variables an be givenin the following ompat form [71℄_M(m)` � k " 0�m̀2`� 1M(m)`�1 � 0�m̀+12`+ 3M(m)`+1# =�ne�TaM(m)` + S(m)` (` � m) (B.54)_E(m)` � k 24 2�m̀2`� 1E(m)`�1 � 2m`(`+ 1)B(m)` � 2�m̀+12`+ 3E(m)`+135 =�ne�Ta[E(m)` +p6C(m)Æ`;2℄ (` � 2) (B.55)_B(m)` � k 24 2�m̀2`� 1B(m)`�1 + 2m`(`+ 1)E(m)` � 2�m̀+12`+ 3B(m)`+135 =�ne�TaB(m)` (` � 2) : (B.56)where we have setS(0)0 = ne�TaM(0)0 ; S(0)1 = ne�Ta4Vb + 4k(	� �);S(0)2 = ne�TaC(0); S(1)1 = ne�Ta4p2!b;S(1)2 = ne�TaC(1) + 4q2=3k�; S(2)2 = ne�TaC(2) � 8q2=3 _H (B.57)
and C(m) = 110[M(m)2 �p6E(m)2 ℄. The oupling oeÆients ares�m̀ = vuut(`2 �m2)(`2 � s2)`2 :Note that for salar perturbations, m = 0, B-polarization is notsoured and we have B(0)` � 0.Finally, we want to onnet the intensities M(m)` with the morefamiliar expansion of the salar (S), vetor (V ) and tensor (T )123



ontributions to the brightness funtion in terms of Legendrepolynomials. Usually one setsM =M(S) +M(V ) +M(T ) :HereM(S) only depends on � = (n �k)=k and the n-dependeneofM(V ) andM(T ) an be written asM(V )(�; �)=q1��2 �M(V )1 (�) os�+M(V )2 (�) sin�� (B.58)M(T )(�; �)=(1� �2) �M(T )+ os(2�) +M(T )� sin(2�)� ; (B.59)where � is the azimuthal angle in the plane normal to k. Eah ofthe funtions M(S;V;T )� (�) is now expanded in Legendre polyno-mials M(S;V;T )� = X̀(�i)`(2`+ 1)�(S;V;T )�;` P`(�) : (B.60)The oeÆients �(S;V;T )�;` are then related toM(m)` via the identitiesM(0)` =(2`+ 1)�(S)` (B.61)M(�1)` =q`(`+ 1) ���(V )2;`�1 + �(V )2;`+1��i ��(V )1;`�1 + �(V )1;`+1�� (B.62)M(�2)` =�vuuut(`+ 2)!(`� 2)! 24 12`+ 3�(T )"#;`+2 + 2(2`+ 1)(2`� 1)(2`+ 3)�(T )"#;`+ 12`� 1�(T )"#;`�2# (B.63)with �(T )"#;` = �(T )+;` � i�(T )�;`We do not repeat this orrespondene for the Stokes parametersQ and U sine it is rather ompliated and not very useful as itdepends on the oordinate system hosen.124



B.4 Power spetraSine they are funtions on a sphere, the observed CMB anisotropiesand polarization are onveniently expanded in spherial harmon-is: ÆT (n; �0)=T0 = P`m a`mY m` (n). The oeÆients a`m are ran-dom variables with zero mean and rotationally invariant vari-anes, C` � hj a`m j2i. The orrelation funtion of the anisotropypattern then has the standard expression:*ÆTT0 (n1)ÆTT0 (n2)+ = 14� X̀(2`+ 1)C`P`(os �) (B.64)where os � = n1 �n2 and h� � �i denotes ensemble average. We usethe Fourier transform normalizationf̂(k) = 1V Z f(x) exp(ik � x)d3x ; (B.65)with some normalization volume V . Using statistial homogeneitywe have*ÆTT0 (n1)ÆTT0 (n2)+ = 1V Z d3x*ÆTT0 (x;n1)ÆTT0 (x;n2)+= 1(2�)3 Z d3k *ÆTT0 (k;n1)ÆTT0 (k;n2+) : (B.66)Inserting our ansatz (B.60) for ÆTT0 = 14M, and using the additiontheorem for spherial harmonis,P`(n1 � n2) = 4�2`+1 Pm Y �̀m(n1)Y`m(n2), we �nd*ÆTT0 (n1)ÆTT0 (n2)+ = 18� X`;`0;m;m0(�1)(`�`0)Y`m(n1)Y �̀0m0(n2)� Z k2dkd
k̂Y �̀m(k̂)Y`0m0(k̂)h�`��̀0i(k)= 132�2 X̀(2`+ 1)P`(n1 � n2) Z k2dkh�`��̀i(k) ; (B.67)125



from whih we onludeCMM;(S)` = 18� Z k2dkhj�(S)` (t0; k)j2i ; (B.68)where the supersript (S) indiates that Eq. (B.68) gives the on-tribution from salar perturbations and MM means that it is theontribution to the intensity perturbation.The QQ, UU , MQ, MU and QU orrelators depend with theStokes parameters on the partiular oordinate system hosen.It is muh more onvenient to express the polarization powerspetra in terms of the variables E and B whih are independentof the oordinate system. Furthermore, sine B is parity odd, itsorrelators with M and E vanish. One �nds the simple generalexpression [71℄(2`+ 1)2CXY (m)` = nm8� Z k2dkX(m)` Y (m)�` ; (B.69)where nm = 1 for m = 0 and nm = 2 for m = 1; 2, aounting forthe number of modes. Here X and Y run overM, E and B.
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