
Tachyonic perturbations in AdS
5
orbifolds

Cyril Cartier∗ and Ruth Durrer†
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We show that scalar as well as vector and tensor metric perturbations in the Randall Sundrum
II braneworld allow normalizable tachyonic modes, i.e., instabilities. These instabilities require non
vanishing initial anisotropic stresses on the brane. We show with a specific example that within the
Randall Sundrum II model, even though the tachyonic modes are excited, no instability develops.
We argue, however, that in the cosmological context instabilities might in principle be present. We
conjecture that the tachyonic modes are due to the singularity of the orbifold construction. We
illustrate this with a simple but explicit toy model.
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I. INTRODUCTION

Already at the beginning of the last century, the idea
that our universe may have more than three spatial di-
mensions has been explored by Nordström [1], Kaluza [2]
and Klein [3]. Since superstring theory, the most promis-
ing candidate for a theory of quantum gravity, is consis-
tent only in ten space-time dimensions (11 dimensions
for M-theory) these ideas have been revived in recent
years [4–6]. It has also been found that string theories
naturally predict lower dimensional “branes” to which
fermions and gauge particles are confined, while gravi-
tons (and the dilaton) propagate in the bulk [7–9].

Recently it has been emphasized that relatively large
extra-dimensions (with typical length L ≃ µm) can
“solve” the hierarchy problem : The effective four-dimen-
sional Newton constant given by G4 ≈ G/Ln can become
very small even if the fundamental gravitational constant
G ≃ m−(2+n)

Pℓ
is of the order of the electro-weak scale [10–

13]. Here n denotes the number of extra-dimensions. It
has also been shown that extra-dimensions may even be
infinite if the geometry contains a so-called “warp fac-
tor”. An especially attractive model of this type, where
the bulk is a 5-dimensional anti-de Sitter (AdS

5
) space

has been developed by Randall and Sundrum [14]. This
is the model which we discuss in this work, we shall call
it RSII in what follows.

The size of the extra-dimensions is constrained by the
requirement of recovering usual four-dimensional New-
ton’s law on the brane, at least on scales tested by ex-
periments [15–17].

Models with finite extra-dimensions always have to in-
voke some non-gravitational interaction in order to sta-
bilize the gravi-scalar (which is equivalent to the ra-
dion) [18]. However, in the case of non-compact warped
extra-dimensions, it can happen that this mode is not
normalizable and therefore cannot be excited. This is
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precisely what happens in the RSII model.

Therefore, there is justified hope that, for suitable
parameters, this model can reproduce four-dimensional
gravity without invoking ad-hoc additional interactions.
However, we show in this paper that the gravitational
sector coupled to a brane with non-vanishing anisotropic
stresses does have negative mass modes. We argue that
these instabilities are not relevant for the Randall Sun-
drum model, but they may be devastating in the cosmo-
logical context, where the brane is moving, as has been
indicated recently for the vector mode [19].

The tachyonic modes are absent if there are no
anisotropic stresses. Furthermore, if anisotropic stresses
remain small, they cannot develop an instability. As we
shall show, this is the case for the RSII model since
there, to first order, anisotropic stresses evolve like in
Minkowski spacetime and hence remain small (if there
Minkowski evolution is not already unstable). In the
cosmological context, however, this is no longer true and
large deviations from homogeneity and isotropy may in
principle develop.

The outline of the paper is as follows : In the next
section, the perturbation theory on RSII is briefly intro-
duced and the relevant perturbation equations are given.
We present the solutions to the bulk perturbation equa-
tions and the junction conditions for tensor, vector and
scalar modes. We pay particular attention to the tachy-
onic modes which are new and represent a possible in-
stability. In Section III we discuss the simple case of
free-streaming, relativistic particles and show that they
induce negative mass modes. We also explicitly solve the
equations for the RSII background and see that no in-
stability is induced in this case. We then argue that,
in principle, this behavior may change in a cosmological
setting, although in the example of tensor perturbations
discussed in some details, this is not the case.

In Section IV, we present a simple 3 + 1 dimen-
sional Minkowski–orbifold who’s bulk modes exhibit the
same instability as the AdS

5
–orbifold. We explicitly re-

construct the instability from the retarded Green’s func-
tion, showing that it is causal. In this toy model, in-
stabilities develop due to non–linear couplings. A final
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section is devoted to some conclusions.

II. PERTURBATIONS OF THE RSII MODEL

Our universe is considered to be a 3-brane embedded
in five-dimensional anti-de Sitter space-time,

ds2 = gABdxAdxB =
L2

y2

[
−dt2 + δijdxidxj + dy2

]
.

(1)
Capital Latin indices A, B run from 0 to 4 and lower case
Latin indices i, j from 1 to 3. Four-dimensional indices
running from 0 to 3 will be denoted by lower case Greek
letters. Anti-de Sitter space-time is a solution of Ein-
stein’s equations with a negative cosmological constant
Λ,

GAB + ΛgAB = 0 . (2)

The curvature radius L is given by

L2 = − 6

Λ
. (3)

Another coordinate system for anti-de Sitter space can
be defined by the transformation L2/y2 = exp (−2̺/L).
Then, the metric takes the form

ds2 = gABdxAdxB = e−2ρ/L
(
−dt2 + δijdxidxj

)
+ dρ2 ,

(4)
which is often used in braneworld models.

We now introduce a brane at y = yb = L (or equiva-
lently ρ = 0) and replace the “left hand side”, 0 < y < L,
of AdS

5
by a second copy of the “right hand side”. We

use the superscripts “>” and “<” for the bulk sides with
y > yb and y < yb, respectively. In terms of the co-
ordinate y, the value of y decreases continuously from
∞ to L and then jumps to −L over the brane where-
after it continues to decrease. At the brane position,
y>

b = L, y<

b = −L, the metric function (L/y)2 has a kink.
The advantage of the coordinate ρ introduced in Eq. (4)
is that the variable ρ does not jump, but the metric func-
tion in the presence of a brane becomes exp(−2|ρ|/L).

The Einstein equations at the brane position are sin-
gular, they contain a Dirac–delta function. To avoid this,
one can integrate them over the brane which leads to the
so-called junction conditions [20–23] at the brane posi-
tion. These read [24]

K>

µν − K<

µν = κ
5

(
Sµν − 1

3
Sqµν

)
≡ κ

5
Ŝµν , (5)

where Sµν is the energy-momentum tensor on the brane
with trace S, and

κ
5
≡ 6π2G5 =

1

M3
5

. (6)

M5 and G5 are the five-dimensional (fundamental) re-
duced Planck mass and Newton constant, respectively.

Kµν is the extrinsic curvature of the brane and qµν is
the induced metric on the brane. Equation (5) is usu-
ally referred to as the second junction condition. The
first junction condition simply states that the induced
metric, the first fundamental form,

qµν = eA

µeB

ν gAB , (7)

be continuous across the brane. Here the vectors eν are
tangent to the brane. In other words, if we parametrize
the brane by coordinates (zµ) and its position in the bulk
is given by functions XA

b (zµ), the vectors eν are defined
by

eA

µ = ∂µXA

b (z) . (8)

Denoting the brane normal by n, we have gABeA

µnB =
0. The extrinsic curvature can be expressed purely in
terms of the internal brane coordinates [25, 26], K =
Kµνdzνdzµ, with

Kµν = −1

2

[
gAB

(
eA

µ∂νnB + eA

ν ∂µnB
)

+ eA

µeB

ν nCgAB,C

]
.

(9)
In the case we are interested in, the background space-

time consists of two copies of the part of AdS
5
with

y > yb = L. We actually let the coordinate y jump from
y = L to y = −L across the brane. Since the metric
is symmetric in y, the first junction condition is trivially
fulfilled. The second fundamental form is proportional to
the induced metric, Kµν = ±L−1qµν , hence the energy-
momentum tensor on the brane is a pure brane tension T ,
Sµν = −T qµν . The second junction condition becomes

K>

µν − K<

µν = [Kµν ] = 2K>

µν , (10)

with

[K00]|yb
= − 2

L
= −1

3
κ

5
T , (11)

[Kii]|yb
=

2

L
=

1

3
κ

5
T . (12)

This leads to the well-known RS-fine tuning condition,

−Λ =
6

L2
=

1

6
κ2

5
T 2 . (13)

The most general perturbation of the AdS
5
metric (1)

is of the form

ds2 = gABdxAdxB

=
L2

y2

[
−(1 + 2Ψ)dt2 − 4Σidtdxi − 4Bdtdy+

((1 − 2Φ)δij + 2Hij) dxidxj + 4Ξidxidy

+(1 + 2C)dy2
]

. (14)

Here Σi and Ξi are divergence-less vectors and Hij is
a divergence-less, traceless tensor. It is easy to show
that there exists one fully specified gauge in which the
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perturbation variables take this form, vectors have no
“scalar component” and tensors have neither a vector nor
a scalar component. We call this the generalized longitu-
dinal gauge (see also [27, 28]). We shall use it in the fol-
lowing. Within linear perturbation theory, the variables
with different spin, the tensor Hij , the vectors Σi and Ξi,
and the scalars Ψ, Φ,B, C do not couple. We can therefore
study the perturbations of each type separately. We shall
do so in the next sub-sections. There we write down the
perturbed Einstein equations for a fixed Fourier-mode k

for which we have k · Σ = k ·Ξ = kiHij = 0. We do not
perform a Fourier decomposition in time.

We want to study the perturbations in an empty bulk
with possible perturbations on the brane. The five di-
mensional Einstein equation implies the perturbation
equations in the bulk,

δGAB = −ΛδgAB , (15)

and the junction conditions at the brane,

2δKµν = κ5δŜµν . (16)

We first discuss tensor perturbations. As we shall see, the
homogeneous equations reduce to the same Bessel equa-
tions for all three types of perturbations (see also [25]).

A. Tensor perturbations

In this paragraph we first discuss the simplest case,
the tensor perturbation equations. We write them down
for a fixed Fourier-mode k and determine their solutions.
We consider only Hij 6= 0. For this case, Eq. (15) reduces
to

(
∂2

t + k2 − ∂2
y +

3

y
∂y

)
Hij = 0 . (17)

For a given polarization, H
•

= H+ or H
•

= H×, we make
the ansatz H

•
= f(t)g(y) leading to

∂2
t f

f
+ k2 =

(∂2
y − 3

y ∂y)g

g
= Z , (18)

where Z is an arbitrary separation constant. The behav-
ior of the solutions to these equations depends strongly
on the sign of Z. If Z = −m2 is negative, we obtain

f = exp(±it
√

m2 + k2) ≡ exp(±iωt) , (19)

g = N(my)2 ×
{

J2(my) ,

Y2(my) .
(20)

Here Jν and Yν denote the Bessel functions of order ν.
They are oscillating and decaying. They are “δ–function
normalizable” perturbations like harmonic waves in flat
space, in the sense that [29, 30]

∫ ∞

0

HmHm′

dy

m2y3
∝ mδ(m − m′) , (21)

These are just the ordinary gravity modes of 4-
dimensional mass m without a mass gap which are dis-
cussed on the original RS paper [14]. However, if Z =
−m2 is positive, the solutions take the form

f = exp(±t
√

Z − k2) = exp(±tω) , (22)

g = N(|m|y)2 ×
{

K2(|m|y) ,

I2(|m|y) .
(23)

Here Kν and Iν are the modified Bessel functions of order
ν. The second case, g ∝ I2 grows exponentially in y.
This is not normalizable and therefore cannot represent
a physical, small perturbation. However, the mode K2

decays exponentially and is normalizable and small for
sufficiently small initial amplitudes. However, even with
arbitrary small initial data this mode grows exponentially
in time for sufficiently small wave numbers, k2 < −m2 ;
it is a tachyonic instability.

To have a complete solution to the perturbation equa-
tions we need to discuss the boundary conditions at the
brane, i.e., the junction conditions.

A short computation shows that the non-vanishing
components of the extrinsic curvature tensor perturba-
tions are in our case

δKij |yb

=

(
2

L
Hij − ∂yHij

)∣∣∣∣
yb

, hence

− 2(∂yHij)|yb

= κ
5
Π

(T )
ij , (24)

where Π(T ) are tensor–type anisotropic stresses on the
brane.

Let us first consider the homogeneous case Π(T ) ≡ 0.
For m2 > 0, the solutions are of the form

H = exp(±iωt)(my)2 [AJ2(my) + BY2(my)] . (25)

The junction condition (24) then requires

B = −A
J1(mL)

Y1(mL)
≃ π

4
(mL)2A , (26)

where the last expression is a good approximation for
mL ≪ 1. This is precisely the result of Randall and Sun-
drum [14]. This is not modified even if we allow for the
negative mass modes, Z = −m2 > 0, because a physical
solution has to be of the form

H = C exp(±t
√

Z − k2)(|m|y)2K2(|m|y) , (27)

and since K1 has no zero, the junction condition (24)
requires C = 0.

But in a realistic brane universe, Π(T ) is not ex-
actly zero. In cosmology, it is just typically a factor
of 10 smaller than other perturbations of the energy-
momentum tensor on the brane. We therefore may not
expect C ≡ 0. However, as long as Π(T ) remains small,
we do not expect the unstable modes to be present, hence
we expect C(k, m) = 0 for k2 < −m2. In the next sec-
tion, we shall show in a specific example that this is in-
deed the case in RSII, where the brane is Minkowski space


