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Differential Geometry






Chapter 1

Differentiable Manifolds

1.1 A manifold

A manifold is a topological space which looks locally like R™.

Definition 1.1 (Topological manifold) A topological manifold of dimen-
sion m s a topological space’ (Hausdorff),?> with countable base, which is locally
homeomorphic to R™. This means, for each point p € M there exists an open set
UC M with p€ U and a homeomorphism® h : U — U, for some open set U CR™.
Furthermore, we require always that M be paracompact*. This implies:

1. M is o-compact®

2. M 1s a countable and disjoint union of connected manifolds, each of them
being a countable union compact manifolds

3. M is metrisible

Definition 1.2 (chart, atlas) Let M be a manifold of dimension m and h : U —
U a homeomorphism from an open set U C M to an open set U CR™.

Let X be aset # (). T, a set of subsets of X, defines a topology on X if it satisfies the
following conditions: 1) An arbitrary union of elements of T' belongs to T'; 2) an intersection of
finitely many elements of T' belongs to T; 3) T contains X and (). A topological space is a
couple (X, T) where X is a set # () and T defines a topology on X. The elements of T are called
the 'open’ subsets of X.

2 A topological space X is called Hausdorff if for any 2 points p#q in X there exist open sets
U >p, V >q which are disjoint, i.e. YNV =0

3A continuous mapping which is bijective and has a continuous inverse.

4 M is paracompact if every open covering of M admits a finer open covering which is locally
finite (M is locally compact)

5A topological space M is o-compact if there exist M, C M which are compact such that
M = UnEN Mo,
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hﬁ (uaﬁ)

R™ R™

Figure 1.1: A change of charts (coordinate change).

e The couple (h,U) is called a chart of M , and U is the domain of h. Physi-
cists often call a chart ’a local coordinate system’.

o A set of charts {(ha,Us) | @ € I} is an atlas if Uua = M.
acl

o [n the intersection Usg 1= Uy NUg where two charts, hy and hg are well de-
fined, the mapping hpo := hgoh' : ho(Uap) — hs(Uag) is a change of chart
or a coordinate change. On its domain of definition hg, is a homeomorphism
and hqp is its inverse.

Definition 1.3 (differentiable atlas ) An atlas is called differentiable if all
its changes of charts are differentiable in the ordinary sense of maps from an open
set of R™ into R™.

To simplify, in the following ”differentiable” always means C*™ (i.e. all partial
derivatives of hg, at any order exist). Evidently, for a differentiable atlas,

hoo = 1id, hﬂ//g o hﬁa = hfya on U, NUz MU, ,

hags is a diffecomorphism from h,(Uss) to hg(Uss) and h;é = hga -

Let A be a differentiable atlas of the manifold M . Let D(A) be the atlas which
contains all the charts for which the change to any chart in A is differentiable.
Clearly, A C D(A). Furthermore, the atlas D(A) is also differentiable because for
every change hg, between two charts hz and h, in D(A) there exists a chart h, € A
such that locally hgy = hgq © hay.
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By definition, the atlas D(A) is maximal. It is the maximal differentiable atlas that
contains A. In this way, a differentiable atlas A uniquely determines a maximal
differentiable atlas D(A) which contains it. If D(A) and D(B) are two maximal
atlases generated by A and B then D(A) = D(B) if and only if the atlas AU B is
differentiable.

Definition 1.4 (differentiable structure) A differentiable structure on a
topological manifold is a mazimal differentiable atlas.

Definition 1.5 (differentiable manifold) A differentiable manifold is a topo-
logical manifold with a given differentiable structure, we denote it by (M, D).

Remark 1.1 7o define a differentiable structure on a manifold M , in general one
does not give all of D but rather a minimal atlas A C D which, as we have seen,
completely determines D .

In the following, we suppose always (without saying) that the charts and atlases
considered are contained in the differentiable structure D of our differentiable mani-
fold (M, D). A topological manifold M in general has several different differentiable
structures.

Remark 1.2 The question whether a topological manifold has inequivalent differ-
entiable structures, D and D', that is, such that the differentiable manifolds (M, D)
and (M, D") are not diffeomorphic is in general very difficult. For example, Ker-
vaire (Geneve) and Milnor (1963) have shown that the 7-sphere admits exactly 28
inequivalent smooth (i.e. C*) differentiable structures. Of the 1- to G-spheres only
the 4-sphere might admit more than one differentiable structure. This remains an
unsolved problem.

Kervaire also showed that there are topological manifolds which do not admit a
differentiable structure and that R* admits uncountably many while all other R™’s
admit essentially just one.

Exemples 1.1

1. M =R™. The chart (id, M), where id denotes the identity, forms an atlas
which induces the ordinary differentiable structure of R™.

2. Every open set of a differentiable manifold, U C M has a differentiable struc-
ture induced from M.
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3. The sphere of dimension n, S® C R with its differentiable structure in-
duced by an atlas containing the stereographic projections from two different

points (see exercises).

4. The cone (see exercises).

Definition 1.6 (differentiable map) A continuous map ¢ : M — N from a
differentiable manifold M into a differentiable manifold N is differentiable in
p € M if for two (and hence for all!) charts h: U — U, p €U, and k : V — V,
o(p) €V, the map ko woh™ from h (o' (V) NU) into V is differentiable in h(p).
Equivalently, we say that o is differentiable if it is differentiable in every point

pE M.

h(p) (ko) p)

R™ R"

Figure 1.2: Differentiability of a map from M to &

Remark 1.3

o The identity id : M — M 1is differentiable.

e The composition of two differentiable maps is differentiable (this implies that
the differentiable manifolds form a category).

o CP(M,N) is the set of differentiable maps from M to N .
o F(M) :=C®(M,R) is the set of differentiable functions on M .

Definition 1.7 (diffeomorphism) A diffeomorphism of M is a differentiable
and bijective map ¢ : M — M whose inverse ¢~ is also differentiable.
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Definition 1.8 (immersion) Let ¢ : M — N be a differentiable map from the
differentiable manifold M of dimension m to the manifold N of dimension n, with
m <n. The map ¢ is an immersion if the charts h and k of definition 1.6 can be
chosen such that kowoh™ : h(U) — k(V) is the inclusion. Here we consider R™ as
subset of R": R™ = R"™ x 0,,_,, C R"™. In other words, in convenient coordinates
¢ is locally of the form (x',... ™) — (z,..., 2™ 0,...,0).

Remark 1.4

e An immersion is locally, but in general not globally injective.

o An injective immersion ¢ : M — N which is a homeomorphism of M to
@(M) is called an embedding

Definition 1.9 (sub-manifold) Let M and N be differentiable manifolds. M is
a sub-manifold of NV if

1. M C N is a topological submanifold.

2. The inclusion i : M — N is an embedding.

As the inclusion 7 is also an immersion, we can choose charts (h,4) and (k,V) such
that 7 is locally of the form

koioh™ : (2% ..., 2™) — (2',...,2™,0,...,0) (1.1)

The domain ¢ of the chart h is of the form ¥ N M for an open set V C A since the

topology of M is the one induced by A . If k£ is defined on V , the representation
(1.1) of i is defined on A ((VNV) N M).
One can also define the product M x N of two differentiable manifolds of dimen-

sions m and n. For two charts h : Y — U/ C R™ and k : Vv — V C R" one defines
the product chart

UXY—=U XV CR™xR"

(xR 0) o (h(p), k() -

(1.2)

The set of all charts {h x k | h € A, k € B} for the atlas A of M and B of N forms
an atlas of M x N which defines a differentiable structure.
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1.2 Vector and tensor fields

In every point p € M of a differentiable manifold of dimension m one can define a
tangent space, T, M which is a vector space of dimension m. We will consider the
tensors on this space. Choosing, in a differentiable way, a tensor of type (r,s) in
each point p € M we obtain a tensor field of type (7, s).

1.2.1 The tangent space

In this section we give three equivalent definitions of the tangent space in a point
p. It is useful to be able to pass freely from one to the other (see exercises). First,
however we have to introduce the notion of 'germs’ of maps.

For two manifolds M and A we consider the maps from M into M which are differ-
entiable in a neighborhood of a given point p € M. We denote this neighborhood
by U, C M. In other words, we define the locally differentiable maps around p,

{¢ | ¢ : U, — N differentiable on an open set ¢, > p} . (1.3)
We introduce the following equivalence relation:

(R) ¢ ~ 1 < 3 an open set VS p such that @\V = w]v : (1.4)

Definition 1.10 (germ) An equivalence class of (R) is called a germ (of a smooth
map) M — N at the point p € M.

We denote a germ which is represented by a map ¢, by % : (M,p) — Nor @ :

(M, p) = (N, q), where ¢ = ¢(p).
Compositions of germs are defined naturally via their representatives.

Definition 1.11 (germs of functions) A germ of a function is a germ f :
(M, p) = (R, x), where x = f(p). The set of all germs of functions in point p € M
is denoted by Fa(p).

Fum(p) has the structure of a real algebra (define the operations naturally with the
representatives).

A germ @ : (M,p) — (N, q) defines through composition the following algebra
homomorphism ¢* from Fa(q) to Fu(p):

0" FMq) = Fulp): frfoop (1.5)
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Obviously id* = id and (¢ o ¢

)* = ¢* ov*. In particular, if ¢ represents an
invertible germ, then ¥ o =1 = id, and

g0l ) =id hence ()" = (o) (L6)

and ¢* is an isomorphism.

A chart h around a point p with h(p) = 0 defines an invertible germ,

h: (M,p) = (R™,0) (L.7)
and thus also an isomorphism®

h*: Fo = Faulp) Fm = Frm(0) . (1.8)

We begin with the algebraic definition of tangent space. For this we need first to
define the concept of a 'derivation’.

Definition 1.12 (derivation) A derivation on Fu(p) is a linear map Fa(p) —
R which satisfies the Leibniz rule, i.e.,

X(f-9)=9w)X(f)+ [(0)X(9), Y[.g€ Fulp) (1.9)

Definition 1.13 (tangent space (algebraic)) The tangent space of M in p,
denoted by T,M, is the (real) vector space of derivations on Fu(p).

Clearly, the derivations form vector space. Furthermore, from the Leibniz rule we
conclude

X(1)=X(1-1) = X (1) + X(1) which implies that X (1) =0 . (1.10)

where 1 : M — R : p +— 1. Hence, by linearity, all derivations vanish on the
constant functions f(p) = c.

A germ @ : (M,p) — (N, q), and thus every differentiable map ¢ : M — N, induces
a linear mapping called the tangent map (or the differential of ¢ in p) denoted
by T, from T, M into T,N. It is given by

Typ: TyM—=TN: X — Xop*. (1.11)
The differential T,p(X) of a germ f : (A, q) — R is given by
To(X)(f) = X og*(f) = X(fop), for X € T,m . (1.12)

6F,, is the set of germs (R™,0) — (R, ).
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The differential of a composition of two germs,

VB (Mp) > (Wig) > (£7) o vle(p)) (1.13)
is the product of the tangent maps T and T'y:
Tp(Yop) =Ty oTyp, whereq=p(p). (1.14)

Proof: _
Consider X € T,M and f € Fr(r).

X (o) () = X(Fodop) =X (¢ (Fou)) =

(o p)(X)(f) =
(Tyo)(X)(f o) = (L) (X)(W* () = (Ty) o () (X)(f) -

|

The linearity of the differential 7,¢ (also called the tangent map of ¢ in the point
p) follows directly from the definition.

Let now N be a differentiable manifold, p € A and let n be the dimension of N .
We show that the dimension of T,V is also n. For a chart h with h(p) = 0, the
germ h : (N,p) — (R™,0) induces an isomorphism h* : 7, — Fa(p). Thus the map

T,h : TN — TyR" (1.15)

is an isomorphism. T,N and ToR"™ therefore have the same dimension. To carac-
terize ToR™, we use the following lemma:

Lemma 1.1 LetU be a ball around the origin in R™ and f : 4 — R a differentiable
function. There exist differentiable functions fi,..., fn :U — R such that

n

fl@) = F0)+ ) filw)a' (1.16)

i=1

td S
f(:)s)—f(O):/O &f(txl,...,t:v")dt:z:v’ O;f(tat, ... ta™)dt,

i=1 LY -~ _
fi,i=1,...n
where 0;f is the partial derivative with respect to .
O
Partial derivatives are special derivations of F,
Oi: Fo—R: frs0,£(0). (1.17)

This leads us to the following lemma:
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Lemma 1.2 The (0;);_, form a basis of the vector space ToyR™ of derivations of
Fn-

Proof:
a) The 0; are linearly independent:
For X ="  a'0; =0, applying X to the germ 7’ we obtain:

0=X(7)= Zaiaixj =al.
i=1
b) The 0; generate TyR™: For X € TyR™, we set a' := X (7). We consider the

derivation
n

Y =X-) do
i=1
and want to show that Y = 0. By construction, Y (#’) = 0. For a given germ f
we can write

T-T0+> 7.7

From the Leibniz rule 1.9 we obtain

n

Y(f) =Y(f(0)) +Zfi<0>@= 0.

O

The dimension of the tangent space T, is therefore uniquely determined and it is
n, the dimension of the manifold N .

In local coordinates (z!,...,z") in a neighborhood of a point p € A, every vector

X € T,Nis given by its expression as linear combination of the partial derivatives
0; , where we interpret the 0; via the isomorphism T),h : T,N — TyR" as elements
of T,N (0; = (T,h) " 9;) where

0),(F) = 0, (Foh) ((p)) (1.18)
Let now @ : (N, p) — (M, q) be a germ and we choose also in a neighborhood of ¢
local coordinates (yi, ..., yn) where ¢ is represented by 0.

With this we can interpret ¥ as a germ from (R",0) to (R™,0), which we denote
also by ©: The tangent map Ty is given as follows: Consider f € F,,.
Setting p(x!l, ..., 2") = (o', ..., 2"),...,o™(zt, ... 2") = (y',...,y™), we
compute
- - Of (. 0%
T ;i =0 Q) = —(0) - -(0 1.19
(@7 =0T o) = 3 520)- 550) (1.19)

j=1
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(W, p) (M, q)
chart A chart k
(R",0) L (R™,0)
(xl,...,x") (yl,...,ym)

Figure 1.3: The relation between a germ from (N, p) to (M, q) and a germ from
(Rn’ O) to (Rm) 0)7 ”G” =ko po h-t

Hence Typ(0;) = <%§—f)0 %. The tangent map 7, in the given coordinates is the

Jacobian matrix Dy = (M)

Oz’
For a vector v =" | a’% we obtain
Top(v) = ; bfa—yj with b= (Dy)oa. (1.20)

With this we have shown the following:

Proposition 1.1 In local coordinates (x', ... z") around a point p € N, such that
p corresponds to (0,...,0) = 0 and coordinates (y',...,y™) around q € M, the

derivations (%)?:1 and (%)FI form a bastis of the vector spaces T,N and T,M.

The tangent map of a germ @ : (N,p) — (M,q) in these bases is given by the
Jacobian

Dyp : R" — R™ .

This leads us to the "physicist’” definition of a tangent vector which in short is:
7 A (contravariant) vector is a collection of n real numbers which transform under
differential maps with the Jacobian”.

We make this ”definition” more precise. Let h and k : (N, p) — (R",0) be germs
of charts. The coordinate transformation

Gi=Fkoh :(R"0) — (R",0)

is an invertible germ.

The invertible germs, i.e. the local coordinate transformations form a group G and
for two germs of the charts h and k there exists a unique § € g such that goh = k.
To every g € G there corresponds a matrix, its Jacobian in 0, Dyg.

This correspondence defines a group homomorphism

G— gl(n,R) : g— Dog (1.21)
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where G/(n, R) is the group of n x n invertible matrices. The ”physicist’s” definition
of the tangent space can now be formulated as follows:

Definition 1.14 (”physical” tangent space) A tangent vector in a point p €
N is a correspondence which associates to every germ of a chart h = (N,p) — (R™,0)
in p a vector v = (v',... v") € R"such that the vector (Dog)v corresponds to the
germ goh for every g € G.

In other words: Let K, be the set of germs of charts in p, i : (N, p) — (R™,0). The
tangent space of the physicist (7,N),u. is the set of maps

vk, = R" (1.22)

which satisfy v(g o h) ® (Dog)v(h) for all g € G.

These maps form a vector space: for a germ h, one can choose v(h) € R™ arbitrarily;
for every other germ of a chart k = ko h=! o h, v(k) is then determined by (x).
(TpN) pnys is thus isomorphic to R™. A choice of coordinates defines an isomorphism
between (T,N),,. and R™.

The canonical isomorphism between T,NV and (TpN)uy. is

TPN - (Tp'/v)phys

o (1.23)

where v assigns to the germ of the chart h = (El, ..., h") the vector

(X (El), ..., X(h")) € R*. The components of this vector are exactly the coeffi-

cients of X in the basis ( a?ci) defined by the chart h.

A physicist writes a vector in a coordinate system and takes into account how it
transforms under coordinate transformations.

The most intuitive definition is the ”geometrical” definition. Here one identifies
tangent vectors in a point p € M with velocity vectors of paths passing through p.

Definition 1.15 (”geometrical” tangent space) Let W, be the set of differ-
entiable paths passing through p, i.e., W, = {w : I — u | w(0) = p}, where I C R
1s an interval with 0 € I, U C M 1s an open set containing p and w s a differen-
tiable map. We consider two paths, w, v € W, and define the following equivalence
relation: w ~ v if for every differentiable function f € F(M)

d d
S(fow)(0) = Z(f 0 0)(0) (120

A tangent vector to M at the point p is an equivalence class, [w]. Thus we define
(TpM)geo 1= W/ ~.
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Clearly if two functions f; and f, generate the same germ in p, i.e. f; = fo,

L(fi ow)(0) = L(f 0ow)(0). An equivalence class [w] corresponds therefore
uniquely to the derivation X, of Fy(p) defined by
— d
() = S (F ow)(0) (1.25)
This correspondence is obviously injective:
(TyM) oo =W/~ = TyM : [w] = X, . (1.26)

But it is also surjective: for X =} a'3% (in a given local coordinate system) we

choose w = (ta', ..., ta™) such that X = X,,. Hence (TyM),, = W,/~ =T ,M.

The tangent map is also very intuitive in the geometric definition of the tangent
space: a map ¢ : N — M with ¢(p) = ¢ generates the mapping

(TpN)seo = (TgM) oo = [w] = [ 0 w] . (1.27)
This is exactly the tangent map defined in 1.13: for f € Fu(q),

XoulF) = 5 (F 0 (00)) (0) = Xu(Fo ) = Xul6'F) = Tyo(Xu)(F)

Hereby we have given three definitions of the tangent space of a differentiable
manifold M in a point p € M, and we have shown that they are all equivalent. In
the following, we shall apply them as we find convenient without distinction.

Definition 1.16 (tangent bundle) The union U T,M, denoted TM, is called

peM
the tangent bundle of M .

TM is also a differentiable manifold (of dimension 2 dim M) with the differentiable
structure induced by the one on M : every differentiable mapping ¢ : M — N
generates a differentiable mapping from TM into TN as follows:

To:TM —=TIN: (p,X) = (p(p), TrpX) . (1.28)

Definition 1.17 (rank) The rank of a differentiable map ¢ : N — M in a point
p € N is the rank of the tangent map at this point:

rk,p == Rank(T,p) . (1.29)

Proposition 1.2 An immersion is a map ¢ : M — N with dim M < dim A whose
rank is everywhere mazximal, i.e., 1k,p = dim M for all p € M.

Proof Choose coordinates around a given point p and apply the theorem of the
rank for maps from R™ into R™. Show that the result does not depend on the
chosen coordinates. O
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1.2.2 Vector fields
Definition 1.18 (vector field) A vector field is a map
X: M—=>TM: p— X, with X,e€T,M. (1.30)

In the language of fibre bundles, a vector field is a section of the fibre bundle TM.

Let (a',...,2™) be local coordinates on an open set 4 C M. For p € U, X,, € T,M
can be given by

’ 0
X,=&(p) — . 1.31
The functions &%, i = 1,...,m are the components of X in the coordinate system
(x!,...,2™). For an other coordinate system in ¢/ , denoted (Z',...,Z™) we have
(according the the physicist’s definition)
—i 0 —i oz ,
Xp=EW)a  where &(p)=55(p) (). (1.32)

We shall always denote coordinates with superscripts and hence also components
of vector fields have superscripts.

Since all coordinate changes are C* (thus also the Jacobian g—ij), the condition

that the components £ of X be C" in p does not depend on the coordinate system.
The following definition therefore make sense:

Definition 1.19 (vector field C") A vector field X is C" in p € M if its compo-
nents (£(p)) are C” functions in p. X is called C" on M if it is C" in every point
pE M.

In the following, we consider mainly C* vector fields, and we denote them by

X(M).
As before, F(M) = C*(M) denotes the C* function on M .
For X, Y € X(M) and f € F(M), the maps
p— f(p)X(p) and p = X(p) + Y (p) (1.33)

define new vector fields on M , which we denote by fX and X+Y. For f,g € F(M)
and X, Y € X(M) we have

fgX)=(f-9)X, fX+Y)=fX+[fY and (f+g)X =[X+gX (1.34)
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In algebraic language, X(M) is a module” on the algebra F(M).

Furthermore, we define the function X f on M by application of the derivation X,,:

(XH)(p) = Xpf, VpeEM (1.35)
In local coordinates we have (see Eq. (1.31))
0
(XD)) = €0) o2 (r) (1.36)

Since &' are C™ functions, also X f is C*°. X f is the derivation of f ”in direc-
tion” X.
The following identities hold:

X(f+9) =Xf+Xg (linearity) (1.37)

X(f-9)=(Xf)-g+f-Xg (Leibniz rule (1.9)) . (1.38)

The map Dxf := X[ is therefore a derivation on F(M) in the sense of the
definition 1.12.

On the other hand, the algebraic definition of tangent space tells us that every
derivation of F(M) is of the form Dy for a certain X € X(M).
For two derivations Dy and D, of an algebra A, the commutator [Dy, Ds] is also
a derivation. Indeed, be a € A. [Dy, Dyla :== D1(Dy(a)) — Do(D1(a)). [Dy, Ds] is
obviously linear, as Dy and Dy are, and
[D17 DQ](CLb) = Dl(D2<ab)) — Dg(Dl(ab))
= Dl((Dga)b + G(ng)) — Dg((Dla)b + CL(le))
= (Dl (DQG/))b -+ (Dga)(le) + (Dl&) (ng) + CLDl (ng)
—(DQ(D1G>)b — (Dl(l)(DQb) — (DQCL)(le) — GDQ(D1b>
= ([D1, Daa)b + a([D1, Da]b);

hence the commutator obeys the Leibnitz rule. Furthermore, the Jacobi identity
is satisfied (exercise!), i.e.,

[Dy,[D2, D3]] + [Ds, D1, D3]] + [Da, [D3, D1]] =0 . (1.39)

The composition Dy o Dy is, however, not a derivation. According to the remarks,
for two vector fields X and Y there exists a vector field Z := [X, Y] defined by

Zf =X, Y]f = X(Y(f)) = Y(X(f)) = Dx(Dy f)) = Dy(Dxf)) .~ (1.40)

"Let A be a ring. A set M is a module over A if M is an additive group with a map
A x M — M which assigns to each couple (z,v), with 2 € A and v € M, an element zv of M
such that the following properties are satisfied: 1) if e is the identity of A, ev = v, Vv € M; 2)
z(v+w) = zv + 2w, for v,w € M; 3) (z + y)v = 2v + yv, for x,y € A; 4) (zy)v = z(yv).
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In local coordinates with X = ¢-2; and Y = n’-2; one finds (exercise!)

ozt ox*
_ (g0 _ 08N O

Applying the definition, it is easy to see that for vector fields X,Y and Z and
functions f and g the following identities are satisfied:

1. [X+Y,Z2]=[X,Z]+]Y, 7]

2. [X,Y] = —[V, X]

3. (X, [V 2+ [Z (X, Y| + [, [Z, X]] = O

4. [aX,Y] =a[X,Y], where a € R

5. [fX,gY] = fglX, Y]+ f(Xg)Y —g(Y ) X.

The properties 1. to 4. tell us that X(M) together with the commutator product
is a real Lie algebra.

1.2.3 Tensor fields

As we have seen, the tangent space T, M forms a real vector space of dimension
m = dim M.

Definition 1.20 (cotangent space ) The dual the tangent in p, TyM, is called

cotangent space to M in the point p. The union U TyM :=T"M is the cotan-

pE./\/l
gent bundle of M .

Definition 1.21 (differential of a function) Let f be a differentiable function
on an open set U C M and let p € U be an arbitrary point in U. For v € T,M we
define

(df)p(v) :=v(f) (1.42)
The mapping (df ), : TyM — R is obviously linear, therefore (df), € TyM. The
map (df) is called the differential (or the gradient) of f in p.

8Let V be a vector space of dimension n. Its dual V* is the space of all linear maps from
V to R (for u* € V*, v,w € V and «, 8 € R, u*(av + fw) = au*(v) + fu*(w)). V* is also a
vector space of dimension n. For every basis (e;)7_; C V there exist the dual basis (e*?)_, C V*
defined by e*7(e;) = 6,7, Vi, j.
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In a local coordinate system (z!,... z™) and for v = a?ci we have

@ (5 ) = 5 (1.43)

In particular, for the component functions z* : p — z*(p) we have

Mﬂh(§%)=6$ (1.44)

Hence (dz')"; is the dual basis of (;2)""

izt ) i=1"
Furthermore, according to (1.43) we have

of

Dot (p)dz* . (1.45)

(df)p =

A co-vector, often called a ’1-form’, is written in coordinates as
w = w;dx’

we shall always write the components of co-vectors as subscript.

Definition 1.22 (tensor bundle, tensor field)

e The space (T,M)" is the space of tensors of type (r,s) on T,M (r-times
contravariant and s-times covariants). In other words (T,M)} is the space
of linear mappings’

ty : TIM® - @TIMRTM@ - @T,M—>R. (1.46)

v~ v

T times 8 times
In particular (T,M)y = TyM, (TyM)] = TrM.

e The union U (TyM), == (TM)}, is the tensor bundle of type (r,s) on M
pEM

e A tensor field of type (r,s) is a map

t:M— (IM): :p—t, € (TuM)L . (1.47)

9Here we make use of the fact that the vector space V can be identified with (V*)* via the
identification of v € V with the map v** : V* — R : a — «a(v). Hence an element of V' can be
understood as linear map from V* to R, i.e. as element of (V*)*.
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Algebraic operations of tensor fields of the same type are defined point by point.
For example for t,u of type (r,s), the addition is defined by (¢t + ), := t, + w,.
Equivalently for the multiplication with a function f € F(M), we define (ft), :=

f(P)tp'

In an open set # C M with local coordinates (z',...,2™) we can represent the
tensors of rank (7, s) in the dual bases (5% ) and (dz'):

ox?
t=tr 0 0 dz? da’s 1.48
The functions (t;lzjr) are called the components of ¢ in the coordinates (xl, cox™).
If the coordinates (z!,...,2™) are changed to (Z',...,7™) the components of ¢

transform according to

==t =t l ls
g _ 000 gt Dat
ds T Paki T ke o g s

(1.49)

The property that the functions t;llg’; be C* is therefore independent of the coor-

dinate system (coordinate changes are C*). A tensor field ¢ is of class C* if the
components of ¢t are C*. In the following we consider mainly C* fields. They are
denoted by 77 (M). The spaces of vector and co-vector fields are 73 (M) = X(M),
and 7" (M) = X*(M).

For t € T/(M), X1,...,Xs € X(M) and w',... ,w" € XA*(M) we can define
F € F(M) by

F(p) := tp(wl(p), ow'(p), Xa(p), ..., Xs(p)) - (1.50)

Hence, t defines a multi-linear map into F(M):

T fois S fois

M@ @XM @XM ® - @ XM) = F(M) :
LW Xy, LX) = t(wh W X X))

Wl W X X)) = (@ (), W (0), Xa(p), - Xa(p))

£ ¢

~~ o~
—

Definition 1.23 (pullback) Let ¢ : M — N be a differentiable map and w €
X*(N) a 1-form. The pullback ¢*w € X*(M) is defined by

(0" W)p(Xp) = Wy (TppXp), with X, e T,M, Ype M. (1.52)

Analogously for a tensor field t € T°(N) and v; € TyM, we define the pullback
p*t by
(@ )p(v1, .- 0s) =ty (T, . ., Thpvs). (1.53)
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For a function f € F(N) we have for v € T,M

(" df )p(v) = (df ) i) (Tpipv) = Tpp(v) f = v(f o @) = v(¢"f) = d(¢"f)(v) . (1.54)

Hence the pullback ”commutes” with d.

Definition 1.24 (pseudo-Riemannian metric) A pseudo-Riemannian met-
ric on a differentiable manifold is a tensor field g € TP (M) with the following
properties:

e g(X,Y) =g(Y, X)

o At every point p € M, g, is a non-degenerate'® bilinear form

If g, is positive definite (i.e. all its eigenvalues are positives), it is called Rieman-
nian metric. The couple (M, g) is a (pseudo)-Riemannian manifold. The
pair (ny,n_) which denotes the number of positive and negative eigenvalues of the
metric is called the ’signature’ of g.

Let (6°)™,, m = dim M be a basis of 1-forms in an open set & C M. In U we have
g=yg50 @0 . (1.55)
We often also write
ds® = g;;0'0?, where 007 := %[9“ ® 607 +07 07 . (1.56)
Denoting the dual basis of (6°) by (e;) we obtain

gij = g(ei, ej) . (157)

Remark 1.5 With the metric g of a pseudo-Riemannian manifold, we have an
isomorphism between T,M and T;M given by

b TyM = TyM X, g(p)(X,, ) =2 X, . (1.58)

Since g is not degenerate, every 1-form w, € TxM is of the form w, = g(p) (wg, ),
for some vector field wg. Hence the inverse

g M= ToM: wy — wf, (1.59)

OLe., gp(v1,v2) = 0Vuvg € T}, if and only if v; = 0.
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is also well defined.

In a local coordinate system with g = g;;dz'dz? and (¢7) := (g;;)7, if X = £'0;
we have X° = £lgidat = &;da?, where & = E'g;; and for w = ndat, W = 19;9"0; =
n’0;, where 1Y = n;g” . The mapping b is called ”lowering an index”, and the
mapping £ "raising an indice”, therefore the signs ”b” and "#”.

For an arbitrary tensor field, for example t € 7}(M) we can also apply b and f.
We define £ € TP(M) by £*(X,Y) =#(X,Y”). And analoguously for a tensor field
of arbitrary type t € 7.(M).

This implies that in a (pseudo-)Riemannian manifold (M, g) the operation of ”rais-
ing” and ”lowering” indices provides isomorphisms

T (M) & T (M) T (M)« TS (M) < T (M) (1.60)
Exercice: Show that in a given coordinates system we have
()% = ¢"0,®0;, and that (9)* = 6/d2’ ® 9; (1.61)

where (g7) is the inverse of (g;;).
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Chapter 2

The Lie derivative

(see Kobayashi and Nomizu [12], pp 26-34 or Matsushima [13], pp 139-145)

2.1 Integral curves, the flow of a vector field

Consider X € X(M) (i.e. C*).

Definition 2.1 (Integral curve) A differentiable path vy : J — M, where J C R
1 a open interval such that 0 € J, is called integral curve of X with initial point
p € M if (we use the geometric definition of a vector)

W(t) = X,y(t)7 VteJ and ’y(O) =p.

Proposition 2.1 For any point p € M and any vector field X € X(M) there
exists an unique maximal integral curve with initial point p, of class C*. We call
it ®,:J, > M:t—= ®,(t). J, CR is an interval and p = ©,(0).

Proof:

In a local coordinate system this proposition follows from the same theorem for
a system of ordinary differential equations on R, and coordinate changes do not
pose any real difficulty. O

We set
D:={(t,p) | peM,teJ,} CRxM (2.1)

and, in the same way

Dy:={peM|(t,p)eD}={peM|te,}CM. (2.2)

29
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Definition 2.2 (complete vector field) The vector field X is called complete
if D=R x M.
Definition 2.3 (global flow) The mapping

O: D—M : (t,p)— D,(t) = D(t,p)

is the global flow of X.

Proposition 2.2

1. DC R x M is open and {0} x M C D (= Dy is open in M )
2. ®:D— M isC™
3. For allt € R, the map
O, Dy =M p—= D(t,p) =P,(t) = Pu(p)
is a diffeomorphism from Dy to D_; and (P;) "' = D,

Proof: This and the following are a simple consequence of the corresponding
proposition for flows on open sets in R™. Just express it in local coordinates.

Consequence 2.3 For all p € M, there exists an open interval J C R and an
open setu C M, U > p, such that J xU C D.

Definition 2.4 (local flow) The map

U=®| = JIxU—M : (t,p)— Bt p)
JxU

1s called the local flow of X in p.

Proposition 2.4 For a local flow V : J x U — M of X in p the following holds:

1. Forqeu, V,:J — M :t— V(t q) is an integral curve of X with initial
point q.

2. Forte J, ¥, U M:qw— Y(t q) is a diffeomorphism from U to V,(U).

3. For q € U with W(q) € U, we have (for (s,t) € J)

\Ijs+t<Q) = ‘IIS(\I!t(Q))a VoW, =Wy .
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As a consequence of point 3, one often calls ¥ a one parameter group of local
diffeomorphisms.

Proposition 2.5 Let X € X(M) be complet and ® : R x M — M the global flow
of X. For any t € R, then Dy = M and we have

1. &, : M — M is a diffeomorphism

2. q)s o} (I)t = ¢S+t

Proof:
This is a consequence of the propositions 2.2 and 2.4. O

Proposition 2.5 implies that for complete vector fields the map ¢ +— ®; is a homo-
morphism of the additive group R into diff(M), the group of diffeomorphisms of
M.

One can show that all vector fields on compact manifolds are complete.

For the explicit proofs of propositions 2.1 to 2.5, see for example Abraham &
Marsden, Foundations of classical Mechanics [2], or Arnold, Ordinary Differential
equations [3], or any other text book on dynamical systems.

2.2 Induced maps on tensor fields

Proposition 2.6 Let ¢ : M — N be a differentiable map. The pullback (see
definition 1.23) defines a linear map

PR = PR (2:3)

k=0 k=0

*

©* is even an algebra homomorphism (with the tensor product).

Forp € M, t € TO(N), s, ..., u, € TyM, we have (*t),(u1, . .., up) = tup) (Trpu, -

Proof:
This is a simple consequence of the definition of pullback.

For w € TP (N) = X*(\) we write

(P*w)p = (1) We(p) - (2.4)
(Tpp)* : T

apN = TyM this is the dual of the linear map Tpp : TyM — Ty, N. In
a coordinate system it is given by the transposed of the Jacobian.

o Typuy).
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Definition 2.5 (related vector fields) Let ¢ : M — N be a differentiable map.
The vector fields X € X(M) and Y € X(N) are called related by ¢ if

T,pX, = Y@(P)’ Vpe M.

Proposition 2.7 Consider X;, X, € X(M) and Y1,Ys,€ X(N). If X;, Y; are
related by ¢, i = 1,2, the vector field [ X1, X5 is also related by ¢ to the field

Proof: Exercise!

Proposition 2.8 We consider t € TP(N), X; € AM), Y; € XWN), for i =
1,...,k, with X; related by p to Y;. Then

(O™ ) p(X1ps - - s Xip) = to) Yigm)s - - - s Yeo(p)) -

Proof:
(0" )p( X1, ..o, Xi) = top) (TpeXa, ..., TreXy)

Since the Y; are related by ¢ to X, this gives

(@*t)p(Xlw SR vka) = ts@(p)(Ylw(p)a e 7Yk<p(p)) :

We consider, in particular, the case where ¢ : M — Nis a diffeomorphism.
Let us first make the following remark from linear algebra:

Remark 2.1 Let £ and F' be two real vector spaces and E.", F." the vector spaces
of tensors of type (r,s) on E respectively F'. Consider an isomorphism A : F —
F'. This induces an isomorphism

Al E - F

defined as follows
Foryy,...,yr € F*, y1,...,ys € F' and t € £ we define:

(AW, .yt s, ys) = t(AYYE A Ay, AT ) (2.5)

It is evident that A} = A and A = (A™1)*. Furthermore, we pose A : R — R :
A= A
Here A* : F* — E* is defined by A*y*(z) = y*(Az) for all x € E and y* € F*.
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Definition 2.6 (push-forward and pull-back) Let ¢ : M — N be a diffeomor-
phism. We define the two maps * and ¢, (which are mutually inverse) by

¢s: TS (M) = T/ (V) (push-forward)

©* TS (V) = T, (M) (pull-back)
by (note that T,"¢ = (T,p),)

s

(90*15)50(17) = (Tp(p)srtp ) fOT’t € ET(M)

and (@*t)p = (Tso(p)@_l)sr(tw(p)) , forte 7;T(N)

For t € T°(N), ¢* is simply our old pullback from definition 1.23. The push-forward
on T (M) is well defined also if ¢ is not a diffeomorphism.

We consider also diffeomorphisms ¢ : M — M. If for a tensor field ¢, p*t = ¢, we
call t invariant under .

If there is an entire one parameter group ®, with @3¢ = ¢, for all s € R, ¢ is called
invariant under the group of transformations (®;)cg.

Exercise: Write p,t and ¢*w in a local coordinate system.

2.3 Lie derivative

Definition 2.7 (Lie derivative) Let X be in X(M) and ®; be the flow of X.
We set M) = @ TI(M). For T € TIM) we define the Lie derivative of T in
s,r>0
direction X by
1
= lim - [T — T] .

t=0 t—0 ¢

d
LyT = —&*T
X dt ¢

Theorem 2.1 Ly : M) — TM) has the following properties:

1. Lx s R-linear,
2. Lx(T®8)=(LxT)®S+T® (LxS) (Leibnitz rule),
3. Lx(T;(M)) C 77 (M),

4. Lx commutes with contractions',

'Fort € EJ, 5,7 > 1, (e;)j=; a basis of E and (e*")j, its dual basis (i.e. e**(e;) = 4,'), the
contraction on the indices 1 and r + 1 is the map C : E — Esfll; te > tEer ey ).
Here the ... are taken 7 — 1 and s — 1 times. This definition is independent of the basis (e;) and
is denoted by C.
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v

CLxfE2Xf=df(X) for f € F M) =T (M),
6. LxY = [X,Y] for Y € X(Mm),

7. Lx.y = Lx + Ly, Lxx = ALy, for A € R,

8. Lixy] = [Lx,Ly]:=Lx oLy — Ly o Ly,

9. Lxdf =d(Lxf) on the functions f € F(M) .

Proof: The points 1 to 5 are immediate consequences of the definition. For 9 we

use that

{0~ df) = jlaoif —dp = |j(aif - )]

Such that
Lxdf = lir%%((b:df —df)=d hir%%(d)jf — f)} =d(Xf)=dLxf .
To show 6 we use that Y f = C(Y ® df):

X2 S| ap(r ) = Ly(C @df)) = OLxY @df) +C(Y © Lydf)

= (LxY)(f) + Y(X[)

Hence (LxY)(f) = X(Yf) =Y (Xf) = [X,Y]f = Lixy)f, which shows point 6.
Point 7 follows easily for vector fields because of 6 and on functions because of
5. With Lxdf = d(Xf) it is also verified on 1-forms of the form df. But since
every 1-form w € A*(M) is a linear combination \;df? it is true for all w € A*(M).
Because of point 2, 7 is hence valid on all TM).

Point 8 is clear on functions and it is a consequence de the Jacobi identitiy on
vector fields. Since Lxdf = dLxf it is also valid on 1-forms of the form df
and by the above argument therefore on all 1-forms. Again, since t € 77 (M),
t=YX1® 20X, 0w @ ®w* using 2 we find that 8 is also valid on all

TMm). O

In the proof of points 7 and 8 we have used the generic property, that two deriva-
tions Dy, Dy on JIM) which commute with d and which coincide on the functions
and on the vector fields, agree on all of TM).

Proposition 2.9 We consider X, Y € X(M) and we denote the flow of X by @
and the flow of Y by W. The following statements are equivalent:

1. [X,Y]=0
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2. LXOLYZLYOLX
3. ®,0W, =W, 0D, for all s,t such that both sides are well defined.

Proof: The equivalence of points 1 and 2 follows from identity 8 of theorem 2.1.
Furthermore, if point 3 is satisfied, 2 follows from the definition of the Lie deriva-
tive 2.7.

To show that if [X,Y] = 0, point 3 is verified, we show a slightly more general
statement:

Proposition 2.10 For a diffeomorphism ¢ and Y € X(M) with local flow ¥, the
1-parameter group of (local) diffeomorphsims ¢poW 0¢~ " is the (local) flow of ¢.Y .

Proof: Obviously ¢ o ¥, 0 ¢! is a 1-parameter group of (local) diffeomorphsims.
For p € M with ¢ = ¢~*(p). the vector Y, € T, M is tangent to the curve v(s) =
U.(q) at ¢ = v(0). Hence (¢.Y), = (1,0)Y, € T,M is tangent to the curve
54 = 607, at g = 6~(p) hence to ¢ 07,0 ¢~ at p. 0

Let us now assume [X, Y] = 0, hence %d)t*Y = 0. Therefore ®,,Y is constant, i.e.
Y is invariant under ®; (in its domain of definition). But according to the above
proposition, this implies that ®,0 ¥, 0 ®; ' = U, hence the flux ¥, commutes with
;. O
Proposition 2.11 Let ®, be the flow of the vector field X and T € TM). Hence

QT =T s equivalent to  LxT = 0.
Proof:

e 7 =7 is trivial (see definition 2.7)

2

e 7 <7 for this direction we use the following lemma:

Lemma 2.1 For T € M), and X € X(M) with flow ®, we have

* d *
QY (LxT) = E(q)t T)

t=s
Proof: By definition

1
QLT = O (lim ~ (T — T)>

e—0 €
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d

®* continu ].
E lim— (@5, T — ®T) = —o;T
fi ¢ (05T = O0T) = G %17,
Therefore if LxT = 0,it follows that < CID*T‘ = 0 for all s, and hence ®;T" = const
and with ®§7T" = T our statement is proven. O

Proposition 2.12 For T € T°'(M), X1,...,X,,Y € X(M) we have

(LyT)(Xy,....X,) =Y (T(Xy,.... X ZT X1, L[V, X5, X

Proof: We consider T ® X; @ --- @ X, € T5(M):

Ly(T®X:® --®X,) = (LYT)®X1,®"'®XS+ZT®X1®- Ly X; @ -®X,
= ¥, ;]

The total contractionl over both sides then gives

Ly(T(X1,..., X)) = (LyT)(Xy,..., X +ZTX1,.. Y, X;),....X,) .

Example 2.1 Forw € X*(M),

(Lyw)(X) = Y(w(X)) = w([Y, X]).

2.3.1 Expression of the Lie derivative in local coordinates

We choose local coordinates (x!,...,2") around a point p € M with dual bases
(0 = 7%),_, and (da');_, of T,M and TyM.

First we have? Lxdz' = d(LX:L’) = d(X](SZ) = d(X') = X';d2? and Lx0; =
(X, 0] = —X];Z-(‘?j. For T' € T] (M) we use the same notation as in proposition 2.12:

(LxT)“ = (LxT)(d.Z‘Zl, N ,dl’“, ajl, . ,8js) (26)

JiJs

But this expression is the total contraction of

(LxT)@da" @+ @da"” ®0j, @ -+ ® 0;,. (2.7)

2XZ denotes 9; X"
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With | |
Ly(T®dz" ®---®0;,) = (LxT)®da" ® --- ® 0;,+

Y T@di"®--@(Lxde™)@---00;,+ Y TRde" @ --@(Lx0;,) @ -®0;, .
k=1 k=1

i l
X ,If dz! -X Jkal

We obtain by total contraction
Lx(T(dz™,...,0;,)) = (LxT)(da™,...,0;,) + X"\T(da!,...,0;,) + -+

+ XU T (da", .. dat 0y, .., 0;) — X T(da™, .. da™ 0, ..., 05,) — -+ —
X', T(da™, ... ) .

Or, with Eq. (2.6):

iy ylmpitede  yripleie L yrberineeel I riveie 1 rpigeein
(LXT)jl“‘js =X Tj1---js )0 X,llemjs XJTJ'r“js—f_X,lel,---js + +X,jsTj1---l :

(2.8)
In particular for w € X*(M):

(Lxw); = X'wj 1+ X . (2.9)

For more details on the topics of chapters 1-3 of this first part, see Kobayashi-
Nomizu [12], Vol I, Chap.I,par. 1-3.
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Chapter 3

Affine connections and the
covariant derivative

In this chapter we introduce an additional structure on differentiable manifolds
which is very important in General Relativity.

3.1 Affine connections

The problem we want to address is the the parallel transport of vectors from one
position p € M to another position ¢ for an arbitrary manifold M. Let us first
consider the situation in R". For two points p,¢ € R" and two vectors v, € T,R"
and u, € T;R", there is a natural way to compare the directions of v, and u,: we
connect p and ¢ by a straight line and we transport v, parallel along the straight
line to ¢g. With this "parallel transport” we define a map from T,R" to T;R". In
a general differentiable manifold this notion of ”parallel transport” does not exist.
This is an additional structure which is in general not unique, and which we define
now.

Definition 3.1 (affine connection) A (linear) affine connection V in a dif-
ferentiable manifold M is a mapping which maps a pair of vector fields X,Y &€
X(M) on a vector field VxY € X(M) such that

1. (X,Y) = VxY is R-bilinear in X and in'Y;

2. for f € FM), VixY = fVxY and Vx fY = fVxY + (X f)Y .
We call VXY 7the covariant derivative of X in direction Y .

39
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Lemma 3.1 Let V be a linear connection on M and U C M an open set. Let
X, Y be two vector fields of which one vanishes on U . Then also VxY wvanishes
onu .

Proof: Consider Y|;,;,= 0. Let p € & be fixed and let h be a function with the
properties that h(p) =0 and h =1 on M \ . Hence hY =Y. Therefore
(VxY)p = (Vx(hY))p = h(p)(VxY) + X(h)(p)Y, = 0.

As the choice of p has been arbitrary, (VxY), =0, Vp € ¢4. In the same manner
one shows the statement for X|,,= 0. O

This implies that an affine connectionV on M induces an affine connection V|,,on
every open subset & C M. Consider X,Y € X(t). There exist X,V € X(M) such
that X|,,= X and Y|;;,= Y (we do not show this continuation lemma). We set

(V‘L)XY ~(V5Y)|, (3.1)

According to lemma 3.1 this definition does not depend on the choice of the con-
tinuations Y and X.

Lemma 3.2 We consider X,Y € X(M). If X, =0, also (VxY), =0.

Proof: Let X be given locally by X = £0; = & (p) = 0. Hence (VxY), =
§'(p)(Va,Y), =0. o

Definition 3.2 (Christoffel symbols) For a given chart (U, z', ... ™) , we set

Vold) =Thoy, 0= =

= (3.2)

The m* symbols T'}; € F(u) are the Christoffel symbols of the connection V (in
the chart (U, z*, ... ,z™)).

Proposition 3.1 Let (z!,...,2™) — (Z',...,Z™) be a coordinate transformation

i an open setU C M. Let Ffj be the Christoffel symbols in the coordinates (z")™,
and ffj those in the coordinates (Z')!,. We then have

be oxt 07 0z

Tk o*zk oze

T 0ozt ok VU T 9regzd ik (3.3)
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Proof:

k

ozb b’ ggpe — T gge ook
On the other hand:

0 or' 0 or’
07a ~ omaom Vil T gpe Vik

Furthermore

9 0/ 9\ _ Oa 9 0% 0
V o (@) = Vi (835” axf) = o e (6aﬂ') " 050 0a

S A
T 00z o \ Oz ) | 9redrt O

—_———
Tk oy,
Hence S
— 0zF  oxioxt_, = O%aF

" Hre — b ozt YU 9reomd

Multiplying by (%d), which is the inverse of (‘%k) proofs proposition 3.1. O

W oxc

Proposition 3.1 shows that the Ffj are not the components of a tensor! But m?
functions which transform according to (3.3) under all coordinate transformations
define a connection V on M which satisfies (3.2).

Definition 3.3 (covariant derivative of a vector field) The map V : X(M) —
TEM) : X — VX, with VX(Y,w) := w(VyX), is the covariant derivative of
X (or the absolute derivative of X ).

For X = £'9; in a coordinate system we denote the components of VX by

VX =& da? @0, (3.4)
We have
' = VX(9;,dx") = da'( Vo, (") ) = da' ("0, + E'T%0) = &, + T8
&* 0 +€RV o, Ok
Hence A A A
£y =&+ Tie". (3.5)

It is easy to see that the f"!j do not transform like a tensor, however, as follows
from the definition of VX the functions fi;j are the components of the tensor

VX € TH(M).
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3.2 Parallel transport along a path

Definition 3.4 (autoparallel vector field ) Let I C R be an interval and = :
I - M: s~ v(s) a path.

The vector field X € X(M) is called autoparallel along v if V4 X = 0 (instead
of V5 X one sometimes writes Dd—X).

The vector field V5 X is called the covariant derivative of X along .

In a coordinate system with X = & i and ¥ = %"; 821 we have
dg’ 0
Vi X = <d ]kf ) Er (3.6)

This shows that V;X depend only on the values of X on 7.
X is thus autoparallel along ~ if

¢

i da?
o T 6 =0 (3.7)

For a given curve 7 and X, € T,©M there exists a unique field X(s) with
X(0) = XO which is autoparallel along ~y: the solution of (3.7) with initial condi-
tion £(0):2% = Xo.

Since the equatlon for X (s) is linear, X(s) is well defined for all s € I. For two
points on 7y, v(s) and (t), there exist therefore an (linear) isomorphism

Tis - T,y(s)./\/l — T’y(t)M CU = T v (3.8)

which maps a vector v € T’,;)M to the parallel transported vector 7; ;v € T, M.

Definition 3.5 (parallel transport) The map T is the parallel transport
along 7y, from ~(s) to y(t).

The fact that the solution of equation (3.7) for given initial conditions is unique
implies that
72,5 o 7?9,7‘ = 72,7’ . (39)

Obviously, 7;; = id.

Proposition 3.2 Let X be a vector field along v. Then we have

d

TesX(v(s)] - (3.10)

ViX(v(t)) = T »
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Proof: For vy € T (syM and v(t) = T svo € Ty M we have
' + Dyafe? = 0.

Since v'(t) = (Tysv0)" = (7;78)ijvg, we obtain

d 7 7 s
&(7;75> Iy—s = Fk]xk
With 7;, = 7,5 and 7, = id,
o xee] ) =L X)) = - @y XeE+L] X))
dS ts ’}/ s=t o dS s=t sit 7 - dS s=t 5t J ’}/ dS s=t 7

= I}, X7+ X' ik = (V5X)

3.3 Geodesics, exponential map, normal coordi-
nates

Definition 3.6 (geodesic) A curve v is called a geodesic, if v is autoparallel
aong vy, i.e.,

Vii =0,

In a coordinate system, v(s) = (x%(s))™,, this condition becomes

B Thal i =0 (3.11)
Remark 3.1

o According to the existence theorem for mazimal solutions to ordinary dif-
ferential equations, there exists a unique mazimal geodesic for given initial
values v(0) and #(0).

o If v(t) is a geodesic, y(as), a € R, is also a geodesic with initial velocity
ay(0).

For sufficiently small a € R, y(as) is well defined in the interval 0 < s < 1.
Hence, for p € M, there exists a neighborhood V' C T,M of zero, 0 € T, M such
that the geodesic 7,(1) with initial conditions 7,(0) = p and 4,(0) = v is well
defined for v € V.
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We set
exp,(v) == 7(1). (3.12)
Since 7,(s) depends differentiably on the initial conditions, the map exp, is differ-

entiable.
From 4, (t) = 7,(ts) it follows for t = 1 that

exp,(sv) = 7u(s), (3.13)
hence
(7 exp, (0)) v = - exp, ()] =5(0) =

such that T exp,(0) = id.
With this we have shown the following:

Theorem 3.1 The map exp, is a diffeomorphism from a neighborhood of 0 € TyMm
to a neighborhood of the point p € M.

This theorem leads us to the definition of normal coordindates:

Definition 3.7 (normal coordindates) Let ey, ..., e, be a basis of TyM. For
an open setU C R™, neighborhood of 0 € R™, the chart h : exp,(z'e;) — (x*, ..., 2")
1s well defined and maps a neighborhood of the point p € M into U .

The coordinates (z',...,x™) are called normal coordinates or Gaussian coor-
dinates around the point p (which has coordinates (0, ...,0)).

Proposition 3.3 In a Gaussian coordinate system,
Ffj(O) + F?Z-(O) =0.
Here 0 denotes the point p around which the coordinate system is defined.

Proof: For sufficiently small s, the point exp,(sv) has normal coordinates z* =
v's, v = v'e;. But expy(sv) = v,(s) is the geodesic with initial velocity v, hence

0= ;k(svl, o s,

At s = 0, this gives 0 = I'},(0)v/v* for any choice of (v, --- ™), this proofs 3.3. O

For a symmetric connexion, I'}; = %, we then have I'};(0) = 0.

Normal coordinates map geodesics through 0 onto straight lines in 7, M.
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3.4 The covariant derivative of tensor fields

We first define the parallel transport of tensor fields

Definition 3.8 (parallel transport) We consider a curvey(s), and o € T3 M.
We define T; soc € T;(t)M by

Tt,s(Te,s0) = a(v) (3.14)

for allv € Ty yM. Since Ty s : TyyM — TyyM is an isomorphism, this defines
Tisc uniquely and Ty s T;(S)M — TW*(t)M is also 1isomorphism. For w € T yM,

(Ti.s0) (w) = (T, w). (3.15)
For a tensor T' € (TV(S)M);'. we define the parallel transport of T', T; ;T € (Tv(t)/\/l)j»
by
(7273T)<’U1, e U, 00, .. ,Oél') = T(’E;l'l}l, c. ,7;;1061') (316)
for oy ET;(t)M, vy € TyM, 1 <1 <i, 1<n<j.

Definition 3.9 Let X be a vector field with integral curve (t), v(0) = p. For a
tensor field T € T] (M), we set
d

(VxT), = E7;_1T7(t) o where T, = Too, T, + = Tou (3.17)

is the parallel transport along the curve v. (VxT), € (T,M) is the covariant
derivative of T' at p in direction X.

This definition generalizes the definition 3.3 of the covariant derivative of a vector
field, see also proposition 3.2.

If X(p) =0 we have (VxT), =0.

For f € F(M), we define Vx f = Xf.

Proposition 3.4 Vx defines a derivation on the algebra of tensor fields, TM).

Proof: The linearity follows obviously from the definition (7; is a linear map). It
remains to show that Vy satisfies the Leibniz rule 1.9: according to the definition,

Ti(Th ® T3) = (1) @ (T 13).

Hence

d
Vx(Th ® 1), = o

= (VxTh @ To +Th @ VxTy), .

(T T4y @ T, Ta )
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Proposition 3.5 Vx commutes with contractions.

Proof: We consider the special case T =Y ® w € TI(M), for Y € XA(M) and
w € X*(M). The general case is totally analog, it just is harder to write down:

Let C' be the contraction and T, the parallel transport along an integral curve of
X. We then have

CT,HY @w)a(e) = CUT, Vo) @ (T () = T wae) (T3 Yas)

= Wy (Vo)) -
Hence taking the limit for s — 0 in the equation

S

¢ <1 (E—I(Y QW) — (Y ® W)p)) = % (MV(S)(YW(S)) - Wp(Y})))

we obtain

C(Vx(Y®w)) =VxC(Y ouw).
O

Consequence 3.6 Vx (Y ®w) = (VxY)®w+Y @V xw implies after contraction

Vxw()) =w(VxY)+ (Vxw)(Y).
X(w(Y))

With this we obtain

(Vxw)(Y) = X(w(Y)) — w(VyY) (3.18)

this equation determines the covariant derivative of a 1-form. Eq. (3.18) implies
that Vxw is F(M)-linear in X. As this is also true for the covariant derivative of
a vector field, Vx is F(M)-linear on T(M): for T € T(M),

VixT = fVxT, for fe F(M). (3.19)

Definition 3.10 (covariant derivative of a tensor field) We set
VT M) = TqM): T VT
where VT is defined by

(VT)(Xl, ce >X7‘+170417 ce ,Oés) = VX

r+1

T(Xl,...7XT,C¥1,...,C¥S)

where X; € X(M), aj € X*(M).
VT is called the covariant derivative of T'.
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Applying the Leibniz rule and the commutation with contractions, we obtain for

T e 7] (M):

Vx[T(Y1,... .Y a1,...,a)] =Vx [CTRYV1® Y, 00 @ @ a)]
=C0(VxTRY1- ®@a,) +C(TROVxY1® -a,)+ - +C(TRYI®--- @ Vxa,)
= (VxT)(Y1,...,a,) + T(VxYi,...,0) +---+T(Y1,...,Vxa,);

Hence
(VxT)(Y1,...,a5) = X(T(Y,...,00))=T(VxYi,...,0)— - —T(Y1,..., Vxa,).

(3.20)
This allows us to give an explicite expression for covariant derivative in a chart

U C M with coordinates (z',... z™).
Let X be given in local coordinates by X = £'9; and I'} = the Christoffel symbols
in the chart (&, z',...,2™) such that
Va,0; = 'i;0, (3.21)

and Vx9; = £'T%,0,. Since da'(0;) = &', we have

(V) (05) = 0 — T e’ (0) = ~€'TY,
Thus . . . . . .

Vxda' = €T} da’; Vg, da' = —T} da’ (3.22)
In coordinate representation

T TZI 1de]1®...®dxjs®ail®"'®air7

J1-Js
i1t 11 is
T =T (0, ..., 0;,dz", ... dz")

we set

T = (Vo T)A 0 =VT(0;,,....,0;, 0, da™, ... dz™) .

JiJs ik J1Js

Eq. (3.20) together with Eqs. (3.21) and (3.22) gives
01Ty 01Ty T ALl 21 7,T
T]ll Js ik TJ11 Js .k + Z Fkl lel Js Z Fk]m Jreele Js (3'23)

where the index [ is taken at the m-ieme position.
In particular for contravariant and covariant vector fields (1-forms are sometime
called ’covariant vector fields’):

X=¢0 VX=¢0,0dr, ¢, =¢,+T,¢ (3.24)
and w=mn;dr’ Vw=mnjde? @ds*, i =np— ijm. (3.25)

Furthermore,
i i sl Y i i
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3.5 Curvature and torsion of an affine connec-
tion; Bianchi identities
Definition 3.11 (torsion, curvature) Let V be a connection on M . The tor-
sion of V is the bilinear map
T X(M) x X(M) = X(M): (X,Y) > VyY — Vy X — [X,Y] = T(X,Y)
The curvature of V is the trilinear map

R X(M)XX(M)XX(M) — X(M) : R(X, Y)Z = Vx<VyZ)—Vy(VXZ)—V[X,y}Z

For vector fields with vanishing commutators, like e.g. the basis vector fields of
a holonomic basis, (0;)I,, the curvature measures the non-commutativity of the
covariant derivatives in direction 0; denoted V;.

Obviously T(X,Y) = —T(Y,X) and R(X,Y) = —R(Y, X) (R(X,Y) € TL(Mm)).
For f,g € F(M),

T(fX,9Y)=VixgY =V [X —[fX,gY] = fgVxY + fX(9)Y
—9fVy X —gY (/)X = fglX, Y] = fX(9)Y + Y (/)X = fgT(X,Y)
In the same way one finds (after a somewhat longer calculation):
R(fX,gY)hZ = fghR(X,Y)Z for f,g,h € F(M) .
The map
X(M) x (M) x X(M) = FM) : (w,X,Y) = w(T(X,Y)) (3.26)
is a tensor field € T} (M), the torsion tensor. The map
X (M) x (M) x X(M) x X(M) = FM) : (w,X,Y,Z) = w(R(X,Y)Z) (3.27)

is a tensor field € T} (M), the curvature tensor . As we shall see, this curvature
tensor is very important in general relativity.

In a coordinate systems the components of the torsion tensor are!

0
= da"(Vi0; = V,;0) =T — T, .

J
N~ N~
o, o

1 V7 = V&V
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Hence
Tj =T} =15, (3.28)

If the torsion vanishes, Ffj =T fl in every chart. Such a connection is called
symmetric. For a symmetric connection T'};(0) = 0 in normal coordinates (see
definition 3.7).

This remark is very important for the formulation of the principle of equivalence
in general relativity .

For the components of the curvature tensor we find

Ry = dz'(R(0g, 0)0;) = da' (Vi V,0; — V,V0;)

j
= da:i(Vk(Fz&L) — Vi(T%;0n))
= d2' (T} 100 — T 100 + DT30m — T Tin0n) -
Such that A A . ‘ ‘
=Ll — Uy 0 T 05T — T, (3.29)

Definition 3.12 (Ricci tensor) The Ricci tensor is the contraction of the cur-
vature tensor. . A . . A

Ry =R, =T, ;-1 , + 505, —Th, . (3.30)

lj i g~ in

Remark 3.2 For the definition of the torsion and curvature tensors we have used
that a F(M)-multilinear map

K:XM)x - x X(M) = X(M)

[\ J
-~

p times

can be interpreted as a tensor field € 7;(/\/1) by setting

Kw,Xi,...,Xp) =w(K(Xy,...,X))).
We define Vy K wvia this identification:
(Vy ) (w, X1, ..., X)) = w((Vy K)(X1,. ... X,)).
But

(VyK)(w, X1,...,X,) =Y(K(w, X1,...,X,)) — K(Vyw), X1,..., X,)—

I?(w, (VyXl), - ,Xp) — IA&(waXla SRR (vap))
Y@K X)) = (Vy)(K(Xi. X)) —w(K(VyX,...,X,))

(.
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—"'—W(K(Xl,...7VyXp)) .
With this we have
(VyK)(Xy,...,X,) = Vy(K(Xy,...,X})) —
K(VyXy,...,X,) —-— K(Xy,...,VyX,) . (3.31)

Theorem 3.2 Let T and R be the torsion and curvature of an affine connection
on M . For arbitrary vector fields X,Y, Z we have

1.
Y RXY)Z=) [T(T(X,)Y),Z)+(VxT)(Y,Z)] . (3.32)

(first Bianchi identity).

> (VxR)(Y.Z)+ R(I(X,Y),Z)] =0 (3.33)

cyclic

(2nd Bianchi identity).

Proof:  We proof the theorem for symmetric connections, i.e., T(X,Y) = 0.
This is the case which is relevant for general relativity. The proof for 7' # 0 is an
exercise for interested students.

We thus suppose T(X,Y) = VxY — Vy X — [X,Y] = 0. We want to show that
the left and side of (3.32) vanishes.

Y R(X,)Y)Z =(VxVy—VyVx)Z+ (VzVx = VxV2)Y
cyclic
+(VyVZ — V2Vy)X — V[X,Y]Z — V[Z,X]Y — V[Y,Z}X
= Vx[Y,Z] = Vy5 X + cyclique
= [X,[Y, Z]] + cyclique === 0 . (3.34)

This shows (3.32). For the 2nd and 3rd equal sign we have used the symmetry of the
connection. For the second identity, still with vanishing torsion, we apply (3.31):

(VxR)(Y.Z) = Vx(R(Y. Z)) - R(VxY, Z) — R(Y,VxZ) ~R(Y, Z)Vx
A >

The cyclic sum of (1) and (2) gives

R(VxY,Z)+R(Y,VxZ)+R(VzX,Y)+R(Z,VyX)+R(VyZ, X)+R(X,VzY) .
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With the anti-symmetry of R we obtain
R(VxY,Z) — R(Vy X, Z) + cyclic
V==Y R((X, Y], Z) + eyclic.
Hence
(VxR)(Y,Z) + cyclic=Vx(R(Y,Z)) — R([X,Y],Z) — R(Y, Z)V x + cyclic

=Vx(VyVz—=V;Vy —Viz) = VixyiVz + VzVixy) + Vixyyz — (VyVy
S—— = S——

—VzVy _V[Y,Z])VX + cyclic.
——

The cyclic sum of V|[x y) z vanishes because of the Jacob identiy. The cyclic sums
of the term --- and —— also vanish. It remains

=—VxVyz — VixvVz + VzVixy] + Viv,z1Vx + cyclic.

The cyclic sum of the terms - and ~ vanishes also and (3.33) is proven. a

3.6 The (pseudo-)Riemannian connection

Definition 3.13 (metric connection) Let (M, g) be a pseudo-Riemannian mani-
fold. An affine connection on M is called metric if the parallel transport along any
smooth curve y(t) conserves the scalar product. In other words, for Xo,Yy € TyoyM
and X (t),Y (t) € TywyM the prallel transported vectors along v, with X (0) = Xo
and Y (0) = Yo,

Gy (X (1), Y () = g4(0)(Xo, Yo) - (3.35)

Proposition 3.7 An affine connection is metric if and only if Vg = 0.

Proof: For v, X,Y as in the definition 3.13, V is metric if and only if

d
—(9y(t)(Tt.0X0, TeoYo)) = 0.
dt

But accordion to the definition 3.9 and Eq. (3.16), this implies

for all Xy, Yy € Ty)M. As the curve v, and the point v(0) as well as the vector
4(0) and the vectors Xy and Yy are arbitrary this proves the proposition. O
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Remark 3.3 According to (3.20), Vg = 0 is equivalent to
X(9(Y,2)) = g(VxY, Z) + g(Y,VxZ) (3.36)
for arbitrary vector fields X,Y and Z. Eq. (3.36) is called the Ricci identity.

Theorem 3.3 On a pseudo-Riemannian manifold there exists a unique affine con-
nection with the following two properties:

e V is metric,

e the torsion T =0 (V is symmetric).

Proof:
1. Uniqueness: T'= 0, thus VxY = Vy X +[X, Y]. With this the Ricci identity

gives
a) X(g(Y,2)) =g(Vy X, Z) + g([X, Y], Z) + g(Y,VxZ).

The cyclic permutation of X,Y and Z in a) results in
b) Y(9(Z,X))=g(VzY,X)+g([Y,Z], X) + 9(Z, Vy X)
o) Z(g(X,Y))=g(VxZY)+g([Z X],Y) +g(X,VzY).

The sum b) + ¢) — a) gives

29(V2Y, X) = Y(9(Z, X))+ Z(g(X.)Y)) - X(g(Y, 2)) — g([Z. X].Y)

The right hand side does not depend on the connection V. Since g is not
degenerate, this proves the uniqueness.

2. Existence: For Y and Z fixed, we define the mapping
1
w:XM) = FM) : X — 3 [right hand side of (3.37)].

w is obviously R-linear.

A brief computation shows that also w(fX) = fw(X) for any function f €
F(M).

Since g is not degenerate, there exists a unique vector field VY such that

w(X) = g(V,Y, X).
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We show that the map
V:AXM) x X(M) = XM): (Z,Y)— VzY

is an affine connection:
The R-linearity in Y and Z is evident.
VizY = fVY follows from a short explicite calculation.
We verify Leibniz’ rule (for g(X,Y) we write (X,Y)):
2V Y, X) = =X(fY, 2) + fY(X, Z) + Z(X, [Y) = ([Z, X], JY)
=2(fVzY, X) = (X)), Z) + (Z))(X,Y) + (Z){Y, X) + (X )Y, Z)
=2f{V2Y, X) +2((Zf)Y, X).

Thus
VzfY = fVzY + (Zf)Y.

O

Definition 3.14 (Riemannian connection) The unique connection of theorem 3.3
is the Riemannian connection or Levi-Civita connection on (M, g).

Expression in local coordinates:
For a given coordinate system we set X = 0y, Y = 0;, Z = 0;, 9(01, Om) = gim and

(9"™) = (gum) ™"
Since [0;,0;] = 0, Eq. (3.37) implies

2(V,0;,0c) = 0;9ir + 0igjk. — Okij-
With V,;0; = I'};0, we obtain

1
I, = §glk 9k 5 + Gk i — 9ij ] , and (3.38)

VX = [X]+TX"o;. (3.39)

We also note the following: Let us choose Gaussian normal coordinates in a point
p for a given symmetric (but not necessarily metric) connection V such that at p,
Or = V. In this case, in p the metric and symmetric connection V; is given by

_ . 1 _ _ _
(V:iX)F = (V. X)"+CEX7  with  CF = 5g"""(ngim+v,-gjm—vmgi]). (3.40)

But both sides of this equation are tensor fields (the covariant derivative of a tensor
is again a tensor). Therefore, Eq. (3.40) is valid in all coordinate systems and this
for an arbitrary point p.

From Eq. (3.40) and theorem 3.3 we obtain also the following:
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Proposition 3.8 Let V be the Levi-Civita connection of the metric gi; and let V
be the one of g;; = Gij + 0g;; then

S _ _
Ly =T+ §9lk [Vi0gik + Vidgjn — Vidgi] - (3.41)

Proposition 3.9 The curvature of the Riemannian connection satisfies the fol-
lowing additional symmetries:

(3.42)

Proof: Because of the F(M)-linearity of R and (-,-), it is enough to show
Egs. (3.42) for vector fields with vanishing Lie bracket (for example for the basis
fields 0; in a local coordinate system).

For the first equation (3.42), it is sufficient to show it for U = Z, i.e.,

(R(X, Y)W, W) = 0.
This equation for Wy = Z + U and Wy = Z — U then implies our statement, since
2(R(X,Y)Z,U) + (R(X, YU, Z)] = (R(X, Y)W, W) — (R(X, Y)Wy, W3).
For the Riemannian connection and the fields X, Y and Z,
(VxVyZ,7)=X(NyZ,7Z)— (NyZ,NxZ) and (VyZ,7Z)= %Y(Z, 7).
From the definition of the curvature it then follows ([X,Y] = 0):
QAR(X,Y)Z,2y=XY(Z,Z)-YX(Z Z)=[X,Y{Z,Z) =0.

For the second equation (3.42) we use the first Bianchi identity, (3.32), for 7' = 0,
ie.

(3.42)4 (3.32)

(R(X,Y)Z,U) ~(R(X.Y)U, Z) “2 (R(U.X)Y. Z) + (R(Y,U)X, Z),
and by the definition of the curvature 3.11:

(3.32)

(R(X,Y)Z,U) 22 —(R(Y, X)Z,U) (R(Z,Y)X,U) + (R(X, Z)Y,U).

The sum gives

2(R(X,Y)Z,U) = (R(X, 2)Y,U)+(R(Z,Y)X,U)+(R(Y, U)X, Z)+(R(U, XY, Z)
Exchanging XY with Z, U we arrive at

2(R(Z,U)X,Y) =(R(Z, X) U, Y)Y+ R(X,U)Z,Y)+(R(U,Y)Z, X)+(R(Y, Z)U, X)



Ruth Durrer General Relativity Chap. 3 55

With R(X,Y) = —R(Y, X) and the first eqn. of (3.42), one sees that the right hand
sides of the two equations agree, and therefore (R(X,Y)Z,U) = (R(Z,U)X,Y).
O

The expression for the Riemann tensor in local coordinates follows from Eqgs. (3.38)
and (3.29).

We now derive the expressions for the Bianchi identities and the symmetries of the
Riemann tensor in local coordinates. Metricity implies

Vigij = Gij % = 0. (3.43)
Since gyg¥ = 6, and §; .+ = 0, it follows that also
97, =0. (3.44)

We define lthe components of the Riemann tensor in a local coordinate system

(.- - 2") by
R', = dz'(R(O, 0, 0;) so that 3.45
gkl

Riji = (0;, R(Ok, 0,)0;). (3.46)
If Z indicates the cyclic sum of the indices ¢, j and k, the Bianchi identities for

(ijk)
the torsion 7' = 0 can be written as:

> Rl =0 (1st Bianchi identity), (3.47)
(4k1)
> Riy., =0 (2nd Bianchi identity). (3.48)
(klm)
Equations (3.42) yield
Rijkl = _Rjikl and Rijkl = Rklij- (349)

Furthermore, we have antisymmetry in the first two arguments (this follows also
from (3.49)): ' '

Contracted Bianchi identity:
Let R;. be the Ricci tensor defined in (3.12)

Ry =R

ijk*

(3.51)

Definition 3.15 (the Riemann scalar) The Riemann scalar R is defined by
R=g"Ry = RE.. (3.52)
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Proposition 3.10

1
(RF — §5ikR);k =0 and (3.53)

(2

R = Ryi. (3.54)

Proof: R, = gﬂRlijk. The symmetry of the Ricci tensor follows from Eq. (3.49)
and from the symmetry of ¢/’

3.49)$2

ml ik
g g Rklij m

Rj m = g lel m = g lg kRijkl m
3.48 mil i 7
— —9™ 9" (Rimi ;j + Rujm i) = Rj — R
With R ; = (6;"R).,» we obtain Eq. (3.53). O

Definition 3.16 (Einstein tensor) The tensor G;j := R;j— %gin 18 called Ein-
stein tensor.

The contracted Bianchi identity (3.53) is equivalent to
This identity is very important for general relativity.

The following theorem elucidates the geometrical meaning of curvature.

Theorem 3.4 Parallel transport is independent of the path for arbitrary paths (in
an open set U C M) if and only if the curvature vanishes (in U ).

Heuristic consideration :
Let v : [0,1] — M be a closed path, v(0) = (1) = p. Consider vy € T,M and
Tivo =: v(t) the parallel transport of vy along ~:

o' = —T% a0k,

We want to determine

Av = vi(1) — v (0) = /0 it = — /O P ()0 (£) (£)d |

Av' = ff;k(x)vkdxj :
v

Here we make use of Stokes’ theorem in the situation shown on figure 3.1:
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()
P! \/

v

Figure 3.1: Application of Stokes’ theorem

f Bjda? = / (Bj 1 — By j)dada’ . (3.56)
0% A

For us B; = I’ (x)v*(z). Hence
But

v’fldml = Fdt = —T*% i™v"dt = —T'% o"da™.
Such that

(Bj 1 — By j)da’da’ = [T, , =T o — T ik + ), T ] oFda? dat
In order for the integral (3.56) to vanish for every v and every vy, we must require

(3.30) i .
[ 1=0 &) Rl (x)=0.

Proof: We consider a map H : [0,1] x [0,1] — M : (s,t) — H(s,t), such that

71

Figure 3.2: Definition of the map H

H(0,t) = v(t), H(1,t) = (t), H(s,0) = p, and H(s,1) = q.

Let vy € T, M be given and let v(s,t) be the vector which is parallel transported
along the path ¢t — H(s,t) for arbitrary but fixed s. We set X = H,(0;) and
Y = H,(0s). Then

Vxv(s,t)] =0 and Vyu(s,t) = 0. (3.57)

s,t t=0,s
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If the curvature R = 0, since [X,Y]| = H,([0;,d;]) = 0,
R(X,Y)v=VxVyv—VyVxv=0 hence VxVyv=0.

Hence Vyw is parallel transported along ¢t — H(s,t). With Eq. (3.57), it then
follows that Vyuv|;s = 0 for all ¢t € [0,1]. In the limit ¢ — 1, one obtains that the
value v(s, 1) does not depend on s:

d ; i j
0 (5,1) + (@) Y7 (s, (s, 1) = 0.

But Y (s,1) = 0, hence Lv'(s,1) = 0.

We now assume that v(s,t) be independent of the path. It follows first that
Vyuvlst = 0, and hence R(X,Y)v = 0. Since H and vy are arbitrary, this implies
that R = 0. O

Definition 3.17 (isometry) Be (M, g) and (N, h) two (pseudo-)Riemannian mani-
folds. A diffeomorphism ¢ : M — N is an isometry if

©*h=g. (3.58)

A pseudo-Riemanniann manifold which is (locally) isometric to (R”,é),

9= cdr’ @ da', & = %1 (3.59)
1=1

is called (locally) flat.

Theorem 3.5 A pseudo-Riemannian manifold is locally flat is and only if the
curvature of the Riemannian connection vanishes .

Proof:
e 7 = 7: Obvious, choose a coordinate system such that the metric has the
form of Eq. (3.59).

2

e 7 < 7: Consider now R = 0. According to theorem 3.4, this implies that
parallel transport is locally path-independent.

We choose normal coordinates in p TyM (0;), C T,M. we can parallel

transport it in a well defined way into a neighborhood. In this way we
obtain a basis (e;)!_; in an open set ¢ > p. By construction, the covariant
derivatives vanish:

Veer =0, [ejex] =Veex— Ve, e =0.

Therefore, (show this!) there exists a local coordinate system such that
€; = 8(?02- .
Since g(e;, e;) does not change under parallel transport, in this system, the

metric coefficients g;; are given by eq. (3.59). O




Chapter 4

Differential forms

I first develop some algebraic preparation which I assume to be more or less known
from the course ”compléments de mathematique 2”.

4.1 Exterior algebra

Let A be a commutative, associative, unitary algebra over R and let E be a module

on A:

e Commutative: a,b € A = ab = ba
e Associative: a(bc) = (ab)c

e Unitary: de € A tel que ea = a, Va € A

We are interested mainly in the case A =R ou A = F(M), where M is a differen-
tiable manifold and E real vector space or E = X(M).

We consider the space of p-linear forms with values in A.
Definition 4.1

1. Ay(E) C T,(E) is the space of totally antisymmetric p—forms on E:
al--- XY )=—a---Y- - X--)
for all o € Ay(E) and X,Y € E.

39
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2. Fort € T,(E) we define the alternation operator A by

1
(At) (v, ... vp) = o Z (sgno )t (Vo(1)s - - - Vo(p)) (4.1)
’ UGSP
where vq,...,v, € E and &, is the group of permutations of p elements and

sgno is the signature of the permutation o.

Proposition 4.1 A is the projection from T,(E) to Ay(E), i.e., A is a linear

operator on T,(E) with A(T,(E)) = A,(E). Furthermore, Ao A= A.

Proof: FExercice.

Definition 4.2 (exterior product) For w € Ay (E), n € AJ(E), we define the

exterior product

(p+q)

Apg(E)dwAn:= ol ~Alw®1n) .

Proposition 4.2 The exterior product has the following properties:

1. (Wi +w) An=wi An+ws A7
2. alwAn) = (aw) An=wA (an) forae A
3. wAn=(-1)PInAw

4. (wl /\a)g) /\a)3 = W1 A (CUQ /\Cdg)
A 18 thus bilinear and associative.

Proof: Exercise.

Proposition 4.3 Let (6°)", be a basis of E* = A(E). Then the products
(O ANO2A-AOP); 1<igp<ip<---<i,<n

form a basis of A, (E).

Consequently the dimension of A,(E), p <mn, is

dim(a,(2) = () =

p
Forp>n, A,(E) = {0}.

(4.2)
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Proof: Exercise.

Definition 4.3 (Grassmann algebra) The Grassmann algebra (or exterior
algebra) is the direct sum

AE) = D A(E)

According to proposition 4.3, dim A(F) = 2".
A(E) is a graduated algebra (associative and unitary).

Definition 4.4 (interior product) The interior product is the map

E x Ay(E) — Ay (E)

(v, W) = W

where (1,w)(vy, ..., Up—1) = w(V,V1,...,Up-1).
For w € A,(E) we define igw = 0. The interior product allows us to define the
map

i: EXAFE)—AE): (v,w) — i,w.

Proposition 4.4

1. i, 1s A-linear
2. iv(Ap(E)) C Ap—l(E)

3. ip(wAN) = (i,w) An+ (=1)Pw A (iyn) for w € Ay(E).
In other words, i, is an anti-derivation of degree -1 on A(E).

Proof: Exercice.

4.2 Differential forms and Cartan’s formalism

Let M be a differentiable manifold of dimension m. For p =0,1,...,m and x € M
we consider the spaces

A(TyM) C Tp(M)
Ao(ToM) = R; Ay(
MToM) = DA (ToM).

p=0
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Definition 4.5 ( differential forms) A differential form of degre p is a co-
variant tensor field of degre p, called w, such that w(z) € A, (TpM) for all x € M.
Often we call it simply a p-form.

Ap,(M) is the module of p—forms on F(M).

AM) = @AP(M) is the exterior algebra of differential forms on M.
p=0

As all the elements of A(M) are tensor fields, all our results on tensor fields are
also valid for differential forms.
The algebraic operations defined in the previous section are defined point by point
for the differential forms, also the exterior product. For w € Ay,(M), Xq,..., X, €
X(M), the mapping

= w(Xi(z),. .., X,())

is a function on M. The map

XM) x - x X(M) = FM) : (Xq,..., X)) = w(Xy, ..., X))

(.

p fois
is F(M)-linear and completly anti-symmetric.
For a vector field X we define the interior product

(ixw)s = ix ()W

In a local coordinate system, (z!, ..., 2™;U), w € A, (M) can be written in the basis
dx® as
w= Z Wiy g, dx™ N - AN dx'?

1<i1 < <ip<n

1 & : :
= —| Z wil...ipd:v“ A Adx™ s
P 1<iy, - ip<n
where the w;,..;, with arbitrary index positions are obtained from those with i; <
iy ... < i, by anti-symmetry.

Let ¢ : M — N be a differentiable map. As we have seen in chapter 3 (proposi-
tion 2.6), the pull-back is linear and respects the tensor product, ®. This implies
that the pull-back

" AN) = AM)

respects the exterior product, ¢*(w A n) = ¢*w A ¢*n. It is therefore an algebra
homomorphism from A(N) into A(M). If ¢ is a diffeomorphism, ¢* is even an
isomorphism with (¢*)™' = (p~1)*.

Definition 4.6 (derivation, anti-derivation) A map 0 : A(M) — A(M) is a
derivation (respectively anti-derivation) of degree k € Z, if
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1. 0 is R-linear

2. 0(wAn)=0wAn+wAbn, forw,ne AM) (anti-derivation if: O(w An) =
Ow An+ (—1)PwAbn, we AP(M), n e AM))

3. 0(Ap(M)) C Appi(M), 0 <p <n.

Proposition 4.5 For anti-derivations 0,60 of degree k, k', 000+ 6000 is a deriva-
tion ofe degree k + k', if k and k' are both odd.

Proof: Simple calculation.

Proposition 4.6 The (anti-)derivations of A(M) are local, i.e. for an open set
U C M and w € AM) such that w|y, = 0 we have Ow|, = 0 for every (anti-
)derivation 6.

Proof:  For x € U there exists a function h € F(M) such that h(xz) = 1 and
h|mw = 0. Hence h-w = 0. Linearity then implies, #(hw) = 0, and therefore
Oh ANw+ h - 0w =0 in x which implies (fw), = 0. O

Consequently, for w = w' in & C M we have 6w = 0w’ in U for every derivation 6.
We can therefore uniquely define 6|y on A(U):
for z € Y and o € A(U) we choose & € A(M) such that & = « in a neighborhood

of x and we set
(e‘u) a(z) = (&) (x).

According to proposition 4.6, this definition is independent of the choice of &. The
existence of such an extension & is a consequence of the continuation lemma:

Lemma 4.1 (continuation lemma ) Let 4 C M be an open set and K C U a
compact set. For all 5 € A(U) there existe an o € A(M) such that

et Oz‘ =0
M\U

Proof:  There exists a function h € F(M) with h(z) = 1 Vo € K and h(z) =
0Vz € M\ U. We can thus choose

| h(z)B(x), zeu
O‘(‘”)_{O, reM\u

We hence have the following result:
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Proposition 4.7 (localisation theorem) Let 6 be an (anti-)derivation on A(M),
U C M an open set. There exists a unique (anti-)derivation 6y on A(U) such that

(Ocv) y= O (a‘u) for all a € A(M)

We also need a globalisation theorem:

Proposition 4.8 (globalisation theorem) Let (U4;);cr be an open covering of
M. Fori € I, let 6; be an (anti-)derivation on A(U;) and 0;; its restriction to
U N U;. If 0,5 = 0 for every pair (i,7) € I x I there exists a unique (anti-
)derivation 8 € A(M) such that 6; = 0].

Proof: For a € A(M) and x € U; we define

oo =a(a],) »

<(90‘) u, ) lu, =% (a uinuj> =i (a Uiﬁ”j)
_ <(6a) ui) "

Eq. (4.3) is independent of the choice of ¢; as long as = € U;, and hence fo is well
defined. O

Since

We shall also use the following fact:

Proposition 4.9 Let 0 be an (anti-)derivation of degree k and 0f = 6df =0 for
all f € F(M). Then
0 =0.

Proof: We choose an atlas (h;,U;) of M. We then set 6; := 0. It is thus enough

to show that §; = 0 for all . But in a local coordinate system (x!,... z") sur

and a € Ay(M),
oz‘ui = Zajl...jpdxﬂ A Adade.

And because of Leibnitz’s rule (point 2 of definition 4.6)

Consequence 4.10 An (anti-)derivation on A(M) is uniquely determined by its
values on the functions (= Ao(M)) and on the "gradients”, {df | f € F(M)} C

A(M)}-

(6

|
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4.3 The exterior derivative

Theorem 4.1 There exists a unique map
d: AM) = AM)

with the following properties:

1. d is an anti-derivation of degree 1
2. dod=0

3. df is the gradient of f for all f € F(M), i.e., df(X) = X f, for f € F(M),
X e X(Mm).

Proof: The uniqueness is a consequence of proposition 4.9. Since a form o €
A,(M) on a chart (z',..., 2" uU) is of the form

a‘u = Z Qiyoiy NATTN - Ndx™, 0y, € F(M)
i1-0p
Points 2 & 3 and the Leibniz rule determine

2,Leibn.

Z dai1~~~ip N d(lfil A A dlL‘ip S Ap+1(./\/l) (44)

i1

doz‘
U

+1
3 < (_1)’“‘1_8 ~ dr A - - A dxte?
= E E Bois it iip 4 Pt

i <o <ipir k=1

(The notation 4y - - - i ip+1 means: "leave out the indext i”.) The globalisation
theorem 4.8 implies then the existence of d. OThe components of da are given by

Pt
0 . . :
(da)il“'im-l = — Z(_l)kaxlk ail"";]\qj"'ip+1, 1 <idg < - <lpp1 (45)
k=1

Definition 4.7 (exact and closed differential forms )
A differential form o C A(M) is called exact if there exists a form B such that
a =dp; a is called closed if da = 0.

Since d o d = 0, every exact form is closed. Locally, the inverse is also true:

Lemma 4.2 (Poincaré Lemma) Let o € A(M) be closed. For all x € M exists
an open set U C M, with x € U such that oy is exact.
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Proof: See e.g. Spivak [14], ”Calculus on manifolds”.

Proposition 4.11 Let ¢ : M — N be a differentiable map from the differentiable
manifold M to the differentiable manifold N'. The following diagram is commuta-
tive, in other words d o p* = p* od.

AM) —F AW
d\ \d
AM) Ay

Proof: For functions, we have already shown this property of the pull-back, see
definition 1.23, Eq. (1.54). We have thus

(doy™)df = (dod)(¢"f) =0=¢"((dod)f)

Our statement now follows with prop. 4.9. O

4.4 Relations between d, iy and Ly

According to def. 4.6, d is an anti-derivation of degree 1, ix, X € X(M) is an
anti-derivation of degree —1 and Lx is a derivation of degree 0 on A(M).

Proposition 4.12 (Cartan’s formula) For X € X(M) we have

LX:dOiX—i-iXod (46)

Proof: According to proposition 4.5, § = doix +1ix od is a derivation of degree
0. Hence if f = Lx f and 0(df) = Lxdf for all f € F(M), Eq. (4.6) is shown.
But for f € F(M)

0(f) = ixdf = df(X) = X[f=Lx/,

and
O(df) =doixdf =d(Xf).
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On the other hand

(Lxdf)(Y) = Lx(df (Y)) — df (LxY) = Lx (Y f) — df ([X,Y])

— X(Vf) = [XY]f = V(XF) = (@d(X) (V)
OWith dod = 0, Eq. (4.6) implies

Lyod=doLxy =doixod.

Furthermore (exercise!)
ix,y] = [Lx,iy].

Proposition 4.13 For w € A, _1(M),

dCL)(Xl, c. ,Xp) = Z (_1)i+1Xiw(X17 s 75(\% s

1<i<p

+ Z (—1)i+jw([XZ-,Xj],X1, Ce ,3(\1', Ce ,Xj, Ce

1<i<j<p

(again X, denote omission of X;).

Proof: For p =1, Eq. (4.9) reduces to df(X) = X f.
For w € Ay(M), (4.6) gives

(4.7)
(4.8)

, Xp)

, X5) (4.9)

(Lxw)(Y) = (ixdw)(Y) + d(ixw)(Y) = dw(X,Y) + Y (w(X)).

With (Lxw)(Y) = X(w(Y)) —w([X,Y]) it follows that

dw(X,Y) = X(w(Y)) = Y(w(X)) —w(X,Y]),

ie., Eq. (4.9).

By induction one can now show the step from p to p + 1 using Eq. (4.6) and the

explicit formula for L yw.

O

Proposition 4.14 Let V be a covariant derivative for a symmetric connection.

For w € Ay(M) we find

A(Vw) = ;_Tl)fdw

Proof: Forw € A (M)

(4.10)

VW(XQ, e ,Xp+1, Xl) = (VX1W)(X2, N ,Xp+1)



68 Section 4.5

p+1

= X1 (w(Xa, . Xp1)) = Y _w(Xa, o, Vi, Xiy o Xpa)
=2

pt+1
1

AVw)(Xa, .oy Xpy1, Xi) = | S ()M Xw(X, X X )
=1

+3 (1) Hw(Vx, X — Vi, X, X, Xoy e X X)

1<j

But since the torsion vanishes Vx, X; — Vx, X; = [X;, X;]. Hence

—1)P
A(VCU)(Xl, ce ,Xp+1) = ;_’_)1 d(,U(Xl, PN 7Xp+1) .

4.5 Cartan’s formalism

Definition 4.8 (Connection 1-forms) Be V an affine connection on M and be
(e1,...,€e,) a basis of vector fields on an open set U C M. Be (04,...,0,) the dual
basis of 1-forms. We define the connection 1-forms «’; € Ay () by

Vxe; = w'(X)e;. (4.11)
We also define the Christoffel symbols with respect to the basis {e;} by
Ve = Thie = w'i(e)e;. (4.12)
With this we obtain
w'; = T},0". (4.13)
Proposition 4.15 For a vector field X = X'e;,
VX = ¢ ® (dX"+ W), X5). (4.14)
For a I-form o = ;0"
Va = 60" ® (do; — whay). (4.15)
Proof: Equation (4.14) follows from (4.11) and the Leibniz rule. For (4.15), we

use that Vx commutes with contractions:

0= Vx(b'(e)) = (Vxb)(¢e;) + 6(Vxey).
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Therefore
(Vx0')(e;) = —w'(X),
so that ' ' ‘
Vx0' = —w" (X)¢. (4.16)
With this and the Leibniz rule, equation (4.15) follows. O

Definition 4.9 (torsion and curvature 2-forms) Since the torsion T(X,Y’) and
the curvature R(X,Y)Z are anti-symmetric in X and Y, we can define torsion
and curvature 2-forms ©’ and Q'; by

T(X,Y)=0'(X,Y)e (4.17)
R(X,Y)e; = (X, Y)e;. (4.18)

Theorem 4.2 The torsion and curvature 2-forms satisfy the structure equa-
tions of Cartan:

Ao’ +w'; N7 = © (4.19)

dw'; + W' Awh = (4.20)

Proof: For (4.19):
O'(X,Y)e; = VxY —Vy X — [X,Y] = Vx(0'(Y)e;) — Vy (0/(X)e;) — 0°([X, Y])e;
= {X(0'(Y)) - Y(6'(X)) = 0'([X,Y]) } & + 6" (V) (X)e; — 0" (X)w(Y)e;
= (d0" + W' A O (X, Y )es.
And for (4.20):
Qij(X, Y)ei = Vvaej — VyVXej — V[Xy]ej
= Vx(w'(Y)e;) — Vy(w(X)e;) — w'i([X,Y])e;
= {X(w;(V)) = Y (w}(X)) = w([X, Y]) } e; + {w;(V)w(X) — ' (X)wi(Y) }er
= (dwij + wh A wlj)(X, Ye; .

O
Setting Rl = 0'(R(ex, er)ej) = Q' (ex, €r), we obtain
T
Equivalently
o0 = §T,gle’f A0 (4.22)

where T}, = 6/(T (e, €1)).
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Proposition 4.16 A connection is metric if and only if
dgik = Wik —+ Wi (423)
where Wik «— gilwlk; 9ij = g(ei, Bj).

Proof: By definition the connection V is metric if (Vxg)u = X (gix)—9(V xei, ex)—
g(e;, Vxer) = 0 for all vector fields X.Therefore, for a metric connection

dgin(X) = X (gix) = 9(Vxei,er) + gles, Vxer) = g(w’(X)ej, ex) + glei, ' (X)e;)

= W(X)gs + Wi (X)gis = Wi (X) + wir(X) .

O
For the Riemannian connection we therefore obtain the following equations:

wij + w]'i = dgl] (424)
Ao’ +w'; A&7 =0 (4.25)

i i i 1 i
dw'; + W' AW = Q) = §Rjklek N (4.26)

These are the Cartan structure equation for a Riemannian connection.

The formal solution of Cartan’s structure equations for a Riemannian
(or Levi-Civita) connection
Be (e;)i-; and (6°)7, local bases of vector fields and 1-forms with 6°(e;) = ¢*;, and
gi; = g(e;, ej). For an orthonormal basis, g;; = £0;;.
We expand df*:

do" = —%leeﬂ' A6 (4.27)
The choice of the basis (¢°) determines the C; and the metric components g;;
since g = g;;0'0. We now compute the connection 1-forms, w’; and the curvature
2-forms €; from the Cj; and the metric components g;;. For a holonomic basis,
i.e., a basis of the form ¢' = da*, we have C}; = 0.
With (4.13) and (4.25) (the first structure equation of Cartan) this yields

1 . . .
(—5 i +F;l) 0’ NO' =0,

so that
i

i~ T = (4.28)

For a holonomic basis, the F;k are symmetric.

We now define for an arbitrary basis

Giik = ex(gis),
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so that dg;; = gijvkgk. Since w;; = gilFiij, (4.24) gives for an arbitrary basis
gilrij + gjlrévi = Gij k-

For a orthonormal basis, the I';;; := gilfﬁq are therefore antisymmetric in ¢5. With
cyclic permutation we obtain

Grij = gklré'z’ + gilré'k
Giki = gl + gklrlij
With eq. (4.28) this leads to
(Gige + Grgi — Ging) = guCl; + 9uCh; + g (Thy + Ty
Multiplication with ¢"™ gives
T = g™ (Gijk + Grji — Gikj) — glel 'gilCllcj :
With (4.28) we find

ki = 59 N Gjki + Gjik — Ginj) + §(Ckz -9 ngiC,ij -9 ’gle’fj). (4.29)
For a holonomic basis (0° = dx*), only the first part of (4.29) is non-vanishing and
we find again the result (3.38).
For an orthonormal basis only the second part is non-vanishing and!

1 )
= 5(0,2’} - 6m5kC’fm — em&iCl,,) -

According to (4.13), . . A
dw'; = Ui A 0" + T4 do"
dry; = el(r;j)el =:T},,0'
dw', =T 0" N OF — —F SChO Ao

i
dwj—

. , . -
(Thja = Tije — Doy Ciit) 0" A 6"

N | —

So that

1 .

Hence ' ' . '
Ry, = Thga = T = Dy it + D005 — T L - (4.30)

1€m = 9mm = +1
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Proposition 4.17 The torsion and curvature forms satisfy the Bianchi identities,
DO ' =dO' +wj A0 = Q' A (4.31)

DY, = dQ; + W) AQL — W AQ =0 (4.32)

Proof: Of (4.31):
dO' + wj A O" = d(df" + ', AN) + W' AdO + W' AW A
=dw', N+ W AW AN = Q8 NG
Of (4.32):
inj+wil/\Qlj—wlj/\Qil = d(dwij+wikAwl“})+wil/\(dwlj+wlk/\wk;-)—w@/\(dwﬂ—l—w%/\w’?)
= dw’ A wlj —wWh A dwlj +wh A dwlj +wh A wlk A w’? — wlj A dw', — wlj Awh A wli =0.

O
Exercise: Show that in a holonomic basis, e; = 9;, 6" = dz*, the Bianchi identities

(4.31) et (4.32) are equivalent to (3.32) and (3.33).

The fact that with Cartan’s formalism the Bianchi identities are nearly trivial
shows how well this formalism is adapted to differential geometry.
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Introduction

Among the physical theories (classical mechanics by Newton, Lagrange, Hamilton
etc; electrodynamics by Faraday and Maxwell; quantum mechanics, etc.), General
Relativity takes a special place, first, it is the only physical theory that has been
developed by one single person, A. Einstein. Furthermore, General Relativity was
not motivated by empirical facts?, but by a contradiction between Newtonian grav-
ity and the fundamental principles of spacetime formulated in the special theory
of relativity. M. Born has made the following statement on General Relativity:
”(Die allgemeine Relativitétstheorie) erschien uns, erscheint mir auch heute als
die grosste Leistung menschlichen Denkens iiber die Natur, die erstaunlichste Ver-
einigung von philosophischer Tiefe, physikalischer Intuition und mathematischer
Kunst. Ich bewundere sie wie ein Kunstwerk.”

Newtonian gravity (ﬁ AG=0V-§= AnGp, where 7 = § = —VO, A =
—4nGp) is incompatible with special relativity (action at a distance): the notion
of simultaneity depends on the coordinate system, and the Newtonian field ¢ in a
point p depend on the rest frame and has no physical meaning.

Einstein (like also others) has first tried to replace A® by O® (and p by T#) but
in the equations of motion for test particles, that he found with this attempt, the
acceleration of a particle in a vertical gravitational field depends on the kinetic
energy of the particle, and therefore on its horizontal velocity.

This result was incompatible with the experience that all bodies experience the
same gravitational acceleration, equality of heavy mass and inertial mass, which
Einstein has immediately recognized as fundamental truth.

Einstein has worked about 10 years to find the theory of General Relativity. Once
he wrote to Sommerfeld on his work concerning General Relativity:

”...Aber das eine ist sicher, dass ich mich im Leben noch nicht anndhernd so
geplagt habe, und dass ich grosse Hochachtung fiir die Mathematik eingeflosst
bekommen habe, die ich bis jetzt in ihren subtileren Teilen in meiner Einfalt fiir
puren Luxus ansah! Gegen dieses Problem ist die urspriingliche Relativitéatstheorie
eine Kinderei...”

In General Relativity (GR), the structure of spacetime from special relativity is
generalised. The basis of this generalisation it the principle of equivalence,
according to which gravity can be eliminated locally in a non-rotating system in
free fall. In other words, infinitesimally, in such an inertial system locally, special
relativity (SR) is valid.

But the metric varies from point to point. In mathematical language. spacetime

2With the exception of the small perhelion advance of Mercury: after perturbative corrections
due to the other planets (~ 530" per century) about 43" per century remain unexplained by
Newtonian gravity.
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is a pseudo-Riemannian manifold. The metric g of signature (—, +, 4+, +) (Lorentz
manifold) does not only determine the metrical and causal properties of spacetime
but it describes also the gravitational field. It become a dynamical element and is
related to the energy-momentum tensor of matter by Einstein’s field equations.

GR unifies geometry and gravitation. It is a mathematical fact that for any given
point z on a Lorentz manifold one can find local coordinates such that

~100 0
0 100
0 001

2. guwalx)=0.

We call such coordinates a local inertial system in the point x.

In such an inertial system the gravitational field is locally (in one point) eliminated
and the equations of special relativity are valid. This equivalence principle will
dictate the form of the equations of motion of a particle, of Maxwell’s equations,
ete. in the presence of gravitational fields (see chapter 5).

Einstein’s field equations relate the metric g to the masses and energies present;
they form the central part of General Relativity (see chapter 6).

Einstein has found them after many years of intensive research. These are non-
linear partial differential equations which relate g to the energy-momentum tensor
of matter. One can show that, with some basic conditions they are (nearly) unique.

Einstein could also show that in the limit of small velocities and weak gravitational
fields one recovers Newtionian gravity. Furthermore, he could derive the perihelion
advance of Mercury as a relativistic correction to gravity (see chapter 7).

After all his success Einstein said once:

"Im Lichte bereits erlangter Erkenntnis erscheint das gliicklich erreichte fast wie
selbstverstandlich, und jeder intelligente Student erfasst es ohne zu grosse Miihe.
Aber das ahnungsvolle, Jahre wahrende Suchen im Dunkeln mit seiner gespann-
ten Sehnsucht, seiner Abwechslung von Zuversicht und Ermattung und seinem
endlichen Durchbrechen zur Wahrheit, das kennt nur, wer es selber erlebt hat.”

In the beginning, GR, found in 1915, had little influence on the developments of
physics. Even though, after the experimental confirmation of Einstein’s formula
for light deflection in 1919, Einstein became a famous public figure, GR was not
very relevant for the advances of theoretical physics at that time. In the 20ties
quantum electrodynamics has been developed. Later (in the 40-60) the standard
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model of elementary particles has emerged, and people have shown that gravity
cannot be quantized in the same perturbative manner as the interactions of the
standard model (it is not renormalisible).

Since the 80 the main efforts of fundamental theoretical physics are in the direc-
tion of a quantum theory of gravity (superstrings, M-theory, the Ashtekar program,
loop quantum gravity, ...).

Also in experimental and observational physics, GR has for a long time not plaid
an important role. Today, this has changed drastically. Many astrophysical phe-
nomena ( X-ray emission, gamma ray bursts, quasars, pulsars, ...) are understood
via interactions of neutron stars and black holes with their environnement. Also
in cosmology is GR indispensable.

Nobel Prizes related to GR are:

e Penzias & Wilson (1978): discovery of the cosmic microwave background
e Chandrasekhar (1983) for the mass limit of white dwarfs.

e Hulse & Taylor (1993): indirect discovery of gravitational radiation via the
study of a binary pulsar.

e Mather & Smooth (2006): for the COBE satellite experiment measuring the
spectrum and fluctuations of the cosmic microwave background.

e Perlmutter, Riess and Schmidt (2011): for the discovery of the accelerated
expansion of the Universe.

(But not the one of Einstein!)
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Chapter 5

The equivalence principle

5.1 Characteristic properties of gravity

Gravity is the weakest among the four interactions. To see this, let us compare
the gravitational and electromagnetic force between two electrons. We find

G”;g —02- 10—426—2.
T T

The gravitational equivalent of the coupling constant of electromagnetic interaction

_ e~ 1
a =i = =08 then

To get a grasp of the smallness of this number, we compare the Bohr radius of a
hydrogen atom with it’s gravitational equivalent
h? c'h

ag = s = ~(.5-10"%m
mee MOl

h? ¢ h Me O
(a)e = = = — -ag ~ 10%cm =2 10" light years
m.Gme.m, mpag Myag

Which is bigger than the radius of the observable universe (Ry ~ 1.4 -10% Ly.).
This is the reason why we can safely neglect any correction from quantum gravity
when we consider atomic physics. Only for large masses gravity becomes signif-
icant. Gravity is also the interaction dominating at very large distances, firstly
because it has an unlimited range (like EM interaction) and secondly because it
is universally attractive. Each form of energy is a source of gravitational field:
matter, anti-matter, kinetic energy,... In addition, gravity acts on each form of
energy.

Universality: The motion of a test body in a gravitational field is independent

79
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of its mass and composition (equality between gravitational and inertial mass)
This universality has been experimentally tested at a precision of 1 : 10'3.
Equivalence principle: No local experiment can distinguish an non-rotating free
falling system from a non-accelerated system with no gravity.

Remark 5.1

e The exact mathematical formulation of this principle will follow.

o Fquality between gravitational and inertial mass is a necessary implication
of the equivalence principle, but the opposite is not true (see exercises!)

Redshift as a consequence of the equivalence principle

It follows from the equivalence principle that all the effects of a (homogeneous)
gravitational field are identical to phenomena in a constantly accelerated system
with no gravity.

Let us consider two experimenters in an accelerating rocket, with constant accel-
eration ¢ . At the time ¢ = 0, experimenter 1 sends a photon towards her friend,

L

Figure 5.1: Experimenters in a rocket, with constant acceleration g

experimenter 2. We suppose that in our inertial reference frame, the rocket is
at rest at t = 0. At the time t = % the photon arrives at 2 (we are neglecting
corrections of order ¥). But at that moment, 2 has already acquired a veloc-
ity v = gt = g%. Therefore she must observe the photon with a Doppler-shift

—_ A~ o o — gh
z=5=2 thatis z = %.

According to the equivalence principle, the same redshift is acquired in a homoge-
neous gravitational field g. In this case we can write z = i—Z = %, where @ is the
Newton potential, such that

= Dy -9y

= (5.1)

z

This effect has indeed been experimentally observed on Earth (Pound & Snider,
1965).
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At the time when Einstein predicted this gravitational redshift (1907), experiments
were not yet precise enough to observe it directly. Nonetheless, one can easily be
convinced by the following energy conservation argument :

Again, let us consider the two points 1 and 2 separated by a distance h in a
homogeneous gravitational field §. Let us suppose that a body of mass m is in free

2

Q

Figure 5.2: Configuration of the second experiment

fall with initial velocity 0, falling from 2 to 1. At point 1 it has a kinetic energy
of mgh. Suppose that all the energy of this mass (mc* 4+ mgh) is transformed into
a photon at 1 which is sent back to 2. If this photon would not interact with the
gravitational field and so would not acquire any redshifted, it would be possible
at point 2 to transform it again into a mass which has then gained an amount
of energy equal to mgh. Hence, this circular process would represent a perpetual
motion machine. In order to save the law of energy conservation, the photon must
lose energy on its way back to point 2 :

2mhe

E1 = 27ThV1 = b\
1

h
= FEy +mgh = mc® +mgh = E, <1+g—2> .
c
This corresponds to the redshift
A
l+2=—== =1+ =

found in Eq. (5.1).

5.2 Special relativity and gravity

Here we want to briefly show that gravity, especially the redshift of photons and
the deflection of light, cannot be formulated in the framework of special relativity.
Redshift: In special relativity, a clock moving along a world line z#(\) from
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x# (A1) to x#(\y) measures a time difference of

-1 000
A2 dzr dz” 0 100

AT = /}\1 e d\  where (1,,) = 0 010 (5.2)
0 0 01

As we will show here, this formula cannot be valid if gravitational fields are present:
Suppose that there is a theory of gravity compatible with special relativity. We
consider the following experiment: The gravitational field is assumed to be static

L9
A
EQ/VV 2
’Y/Al
Ey

emitter absorber H

Figure 5.3: Setting of this experiment

with respect to the indicated inertial reference frame.

The emitter sends at a constant frequency during the time interval from FE; to Fj.
Because the situation is static, a photon emitted at £, moves parallel to the one
emitted at FEy (but not necessarily at 45° because of the presence of the gravita-
tional field). But if special relativity was valid for the measurement of time, the
temporal separation between F, and E; would be equal to the one between A,
and A;, and that would be in contradiction with a redshift.

Deflection: If the relations of causality were determined by special relativity, light
cones would always be straight cones and light would move along straight lines.
That would contradict the deflection of light in a gravitational field, which was
empirically observed (for the first time during a solar eclipse in 1919). Therefore
the metric can also not be conformally flat, that is of the form exp(®)n,, with a
scalar field @, because in this form, the light cone would remain straight.

In addition, according to the equivalence principle, one cannot empirically distin-
guish a freely falling system from an inertial system. But the inertial law (#* = 0)
is not valid in free fall. Then there is no way to operationally define what an ”iner-
tial reference frame” is. With this, we have lost the very basis of special relativity!
(and also the reason to represent spacetime by an affine space which is justified by
the law if inertia.)
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5.3 Space-time as a Lorentzian manifold: math-
ematical formulation of the equivalence prin-
ciple

In the previous section we argued that in presence of gravitational fields spacetime,
cannot be described by Minkowski space. But we have seen that according to the
equivalence principle, special relativity is nevertheless valid infinitesimally. At
each point p a metric (g, (p)) can be specified. In general, this metric varies
from one point to another, such that we cannot find any coordinate system where
Guv(x) =1y, for all x.

”Definition”: The mathematical model for spacetime (i.e. the set of all events)
is a pseudo-Riemannian manifold M that has a metric with lorentzian signature
(—,+,+,+). Such a manifold (M, g) is called Lorentz manifold.

Exercise: Show that the signature of the metric of a pseudo-Riemannian manifold
cannot vary from one point to another.

The metric establishes (as in special relativity) the relations of causality: the
optical signals emitted from an event x € M form the future light cone , L™. The
optical signals converging towards x form the past light cone, L~. We suppose that
the distinction between the past and the future cone is possible in a continuous
way, at least locally (i.e. that (M, g) is oriented in time).

Figure 5.4: The past and future light cone. The vector 4(t) is the tangent to the
world line of a massive particle, time-like, g« (Y(¢),%(t)) < 0 and p(t) is tangent
to the light cone, and light-like, g,«) (/(t), f1(t)) = 0.

Definition 5.1

e A world line is called time-like if its tangent vector v is at every point
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(event) inside the light cone, g, ((t),%(t)) < 0.

e [t is called light-like if 7 is everywhere tangent to the light cone,
vy (1), 4(2)) = 0.

e [t s called space-like if 5 is everywhere outside the light cone,
Gy (¥(1),3(t)) > 0.

The metric g determines the gravitational field (gravitational potential). Hence the
gravitational field, the metric and causality properties of spacetime are described
by the same quantity g.

In a Lorentz manifold there is in general no prefered coordinate system (apart from
situations with symmetry).

Therefore the laws of physics must transform covariantly under coordinate trans-
formations, in the sense of the following definition:

Definition 5.2 (covariant system of equations) A system of equations is called
covariant under the group of coordinate transformations, G(M), if each element
© € G(M) maps the quantities in the equations to new quantities such that

1. This map preserves the group structure G(M).

2. The transformed quantities also satisfy the system of equations.

Only covariant laws have an intrinsic meaning, independent of the coordinate sys-
tem. By using an adapted geometrical language, it is possible to formulate them
without using coordinates.

As we have shown in the first part, at each point xy € M there exists a coordinate
system (geodesic or normal system) such that

gul/(xO) = Ny and Guv ,A(IO) =0. (53)

Such a system is called a local inertial system. In this system the laws of physics
take the same form as in special relativity at the point x.

In the next paragraph the two following conditions will allow us to formulate the
laws of physics in the presence of gravitational fields:

1. Except for the metric and its derivatives, the equations contain only quanti-
ties already present in their special-relativistic formulation.

2. The equations are covariant and they reduce to their ”special-relativistic”
form in a geodesic system (5.3) at the point .

These two conditions represent a mathematical formulation of the equivalence
principle.
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5.4 The laws of physics in the presence of gravity

(From now on ¢ = 1.)

5.4.1 Equation of motion of a test particle in a gravita-
tional field

According to the equivalence principle and special relativity, in a locally inertial
system at point p € M, the trajectory z(s) of a free (not subject to any force) test
particle obeys the following equation:

d?zr
=0 5.4
where s is the arc length, i.e.
dz* dz”
=1, 5.5
gl‘« dS dS ( )

With T'h 5 = 36" (gua 5+ 9v8 0 — Jas ») and T 5(p) = 0, equation (5.4) at the point
p is also

d?gH dx dz? dz®
= 7 ) =0 (&t=—709, 5.6
ds? + O‘ﬁ ds ds < Vil = (@ ds ) (5.6)

But eq. (5.6) is generally covariant and thus valid in every coordinate system and
at each point p of the trajectory (because we have chosen p arbitrarily).

Since & undergoes a parallel transport along the trajectory, it follows that g(&, %) =
const. = —1 along the trajectory.

For the trajectories of light rays z#(\) where \ is an affine parameter, we have

dz# dx?
Iy (5.7)
A%+ dx® dxﬁ
# .
D2 e Ay (5:8)

This equation of motion can also be derived by applying the variational principle

on the action Aot
M dz
S = /gw, T ds (5.9)

Indeed, 6S = 0 gives

dz# dx? dz# dx¥ d dz#
=6 [ g S ds = [ 62 | g, 9 (g ) 4 1
0 /g“ a5 ds 0T / v [g“ Mds ds | Cds (g*“ ds>] s (510)
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for every variation dz*. It follows that

dz* dz” A2z
O: al ”, ) w _ ,
9" (Guwox =201 )ds ds ds?
or, with I, = %gaﬁ (9w +98vo0 —Guvsp)
Az da* da”
< a ST (5.11)

ds2 M ds ds

5.4.2 ”Conservation” of energy-momentum in the presence
of a gravitational field

In special relativity, the energy-momentum tensor T*” of a closed physical system
satisfies the conservation law

™ = Q.
In an inertial system at p (I, ;(p) = 0) this is equivalent to
7% (p) = T/ (p) + T ()T (p) + Lo ()T (p) = 0. (5.12)

Again, since this equation is covariant it holds in every coordinate system. T = 0
is therefore the generalization of energy-momentum conservation in the presence
of gravity. In general, this law does not lead to conserved quantities. This is
not so surprising, since we expect energy and momentum the be exchanged with
the gravitational field. However, apart from special cases, there is no meaningful
general definition of energy and momentum of the gravitational field.

Example 5.1 For a perfect fluid with energy density p and pressure p where ut
1s the energy flux,

™ = (p+p)u'u” +pg"”  (guu'v” = —1). (5.13)

Show that for p =0, (pu*),, = 0 and u satisfies the geodesic equation. In this case
the fluid is called ”dust”.

5.4.3 Electrodynamics in the presence of gravitational fields

As usual, the electromagnetic field-strength tensor (the Faraday tensor) is given
by

0 —-E, —Ey, —FEj3
E, 0 —Bs By
E, DBs 0 —-bB
Es —By DB 0

P = (5.14)
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where F/ = —cikp, 0 = F'. Maxwell’s equations in special relativity are
Fr = —dmj# (0F = —4mj), (5.15)
Forx+Fy,,+Fx,=0 (dF =0), (5.16)

= 1
() = (p, J) is the electric four-current (and F' = QFde“ Ndz”  j = j,dzt) .
(5.17)

In the presence of gravitational fields we define £, and j* in such a way that they
transform like tensor fields and they reduce to (5.14) and (5.17) in a locally inertial
system at the point p.

When gravitational fields are present, (5.15) and (5.16) become

FH = — 4t (5.18)

FMV;)\+FA;L;V+FV)\;M:0 (519)

(5.19) is identical to (5.16)!
The condition of integrability (5.16) or (5.19) allows the representation by an
electromagnetic potential :

FMV:AMW_AV#:AMW_AVW (F=dA).
With the electromagnetic potential A,,, the equation (5.18) becomes
ARV, — AVHE L = —4mgt. (5.20)
The electromagnetic energy-momentum tensor is

1 1
T = _E |iF§F)\V -+ Z_lngFU)\Fo')\‘| . (521)

When gravitational fields are present, the Lorentz equation becomes

d*xt dz® da” dz”
M, —— ) =—efF", . 0.22
m<d52+aﬂds ds) ‘ ds (5:22)
Ambiguities:
In the absence of gravitational fields (5.20) is
ARV AV = At (5.23)

Since partial derivatives commute, this is equivalent to

A — AV = At (5.24)
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But in a gravitational field, the second expression gives
ARV, — AV, 4+ REAY = —4Amgt (5.25)

where R is the Ricci tensor. For this we made use of the definition of the Riemann
tensor which for a coordinate basis (9,) gives

(V.V, =V,V)Z = (Z2°,,—2°,,) 85 = R4, Z%05  which implies
AVt — AV R = RV, MAY = RMAY.

The equivalence principle does not say which of the equations (5.20) and (5.25) is
the right one when gravitational fields are present.

The transition from special to general relativity contains such possibilities of "non-
minimal couplings” once we encounter higher derivatives. This ambiguity is com-
parable to the one about the order of operators in the transition from classical to
quantum mechanics.

In practice, such problems are rare but there is no general prescription to solve
them (in the case of (5.20) and (5.25) one must look at the original Maxwell equa-
tions, (5.18), and so decide for (5.20) and not for (5.25)).

5.4.4 The Newtonian limit

— 1
9

For slowly moving particles, (u*) = (i*) = ~(1,7), v ~ wimrd v? < 1 in a weak
gravitational field

o | <1

o O = O
O = O O
_— o O O

0
G = N + h;wy (T/MV) = 0
0

we can neglect ]dd—“”f| ~ |v*| which is small compared to dd—”f ~
The equation (5.6) then gives us (y ~ 1)
d?z?  d%a  dx® d2? - 1
> = Ti—— T >4
dt? ds? ds ds 2
If we also suppose that the gravitational field varies slowly in time, we can neglect
the quantity hg; o, and we arrive at

hoo i hOi 0 - (526)

Pz 1=
For (I>
hoo = =2,  goo = —(1+2—) (5.28)
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we find Newton’s equation
4z
a2
Eq. (5.28) can only by determined up to a constant. That constant can be specified
by the boundary conditions,

— V.

hoo(7) 2550 and  ®(7) 250
(in goo we have reinserted ¢ just for once).

Exemples 5.2 % 18 approximately:

e 107Y on FEarth,

2-107% on the surface of the Sun,
e 107* on a white dwarf,
e 107! on a neutron star,

e 1073 "on a proton”.

5.4.5 Redshift in a gravitational field

We define (an intrinsic definition will come later) a static gravitational field as a
spacetime with a coordinate system (¢, z") such that the metric takes the form

d32 = gOO(f)dtQ + gw(f)da:’dx]

There exists a ”foliation” of spacetime M = R x § 5 (¢,Z) such that S is a
Riemannian manifold with the metric

9;;(Z)dz'dz’  and  ¢(9, X) =0, VX € X(S) .

The proper time 7 of an observer on the trajectory (¢, Z(t)) satisfies

dr\? da# da¥
(=) =g,,——— 5.29
(dt) TT (5:29)
(according to the equivalence principle). A
dz’®

For a watch at rest in the system (¢, z?), i.e. ‘i = 0, this gives

dr = vV —3d00 dt
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At the point ¥y we periodically emit light flashes with temporal separation A7 =
v/ —900 Aty (the above differential identity is also valid for finite time intervals since
goo is time independent).

As the metric does not depend on the time ¢, the time difference between the
arrival of two flashes at the point @y, At} is equal to the difference of the time of
emission

AT
V —goo(72) '
On the other hand, the same physical process at the point #; has the same ” proper
period” A7 but then the amount of time At; that elapses is given by

AT
—900(51) '

At = Aty =

Aty =

If we compare the frequency v, of a signal arriving from point 2 with the frequency
vy of the same signal produced at point 1 we get

1 1 Vs Goo(Z2)
—_— e — = . 5.30
e Aty e Aty" 1y 9oo(Z1) ( )

For weak gravitational fields ggo = —(1 + 2®), this gives the shift

2= 212 3(T) — B(F). (5.31)
V2

The light coming from the Sun arrives on Earth with a shift z ~ 2-1075. This
effect has been measured convincingly in the gravitational field of the sun rather
late. The measurement is difficult since velocities on the surface of the sun also
induce a Doppler redshift [11].

5.4.6 Fermat’s principle for static gravitational fields

We consider again a metric of the form
ds? = goo(#)dt? + gip(Z)dx'da”.
Let x#(\) be a light ray with z; = 2(0) and 25 = x(1). The geodesic equation for

z#(\) leads to (5.11),
1 da? dav
) ,—————dA=0. .32

First we consider only the variation of ¢(\):

L dat da ! dt dt
=5 | guodr= [ 20006 [ = ) dA .
0 /Og“ dr d /0 0\ <d>\> (5:33)
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LG dt
= | —(2g00— .
/Od)\(good)\)étd)‘

Because 6t can arbitrarily be chosen, it follows that

dt ‘
— = const.
4doo £

Let us choose the parameter A such that

dt
googy = L. (5.34)

For any (light-like) trajectory we have

(At daida?
o\ ax) ~ I A

A VI
dA V=90
With eq. (5.34), eq. (5.33) implies

dt do o
0= (5/ <—> d\=¢ where do? = g;;dx'da’ .
dA N 90

In other words, 1/4/—goo plays the role of a refractive index. In a static spacetime,

the spatial trajectory of a light ray is a geodesic of the metric _gg"é - on S!

5.4.7 Static and stationary gravitational fields

Naively, a gravitational field is called stationary if there exists a coordinate system

in which the metric does not depend on the time ¢ = 2°.

Here we want to translate this intuitive notion into a geometrical description.
Setting K = 0,

Ohgw =0 & K'gua+ 9K + 90K, = Ligg=0

This leads us to the important definition of a Killing vector:

Definition 5.3 (Killing field) A vector field K that satisfies
Lxg=0 (5.35)

1s called o Killing field for the metric g.
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Each Killing field generates an isometry group of one parameter:

The flow of K denoted by ®,; satisfies ®},g9 = g. (5.36)

Definition 5.4 (stationary metric) The metric of a Lorentz manifold (M, g) is
called stationary if it admits a time-like Killing field.

From this definition, it follows that there exists a local coordinate system in which
g is time-independent. In order to construct it, we consider in a neighborhood
of a point py a three dimensional hypersurface S that is not tangent to K, i.e.
K(p) ¢ T,S for every p in a neighborhood of py.

Let z'(p), 2%(p) and 2*(p) be some coordinates on S and @, = ®; the flow of K.
At a point ¢ = @;(p) we choose the coordinates (¢, z'(p), z*(p), z3(p)). With this
construction K = 0; = 0,0 and

Lkg=0 1isequivalent to g 0=0.

It may happen that a Killing field is time-like in a certain domain, space-like in
another one and light-like at the boundary (see black holes). In this sense the
definition of stationarity given here is a local one.

Definition 5.5 (static metric) A stationary metric is called static if the 1-form
K’ satisfies
K’NdK” =0 . (5.37)

We would like to show that in this case the surfaces S can be chosen such that K
is normal to & and thus g;o = 0.

This is indeed a consequence of Frobenius’ theorem: let us introduce K(p)+ =:
{X, € T,M| g,(X,, K(p)) = 0}. Ifeq. (5.37) is satisfied, the distribution { K (p)* |
p € M} is locally integrable. That is, locally

K’ = (K, K)df (5.38)

for some function f. The surfaces {f = const} are then normal to K. We now
prove the existence of the function f in (5.38). In a coordinate system which is
normal at the point p, eq. (5.35) leads to K, , + K, , = 0. For an arbitrary
coordinate system, this implies

the Killing equation, K,,+ K,,=0. (5.39)
K’ NAK’ = (K, K, y + K, Ky , + K\K

o) dat A dx” A dz* =0 .

Because K, dz¥ A dz* = K,;5 dz” A dx?, we can replace in this expression every
ordinary derivatives by covariant derivatives. This gives

AK, Ky + KKy + K)\K,,) =0.
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(A denotes antisymmetrization in all indices.) Using the Killing equation, K, is
antisymmetric, this is equivalent to

1
_KMKA;V + KVK)\%M + éKk(Ku;V - KV%H) .

It is easy to check that the above expression is antisymmetric in all its indices. By
multiplying it by K* we get

~K, KK, +K, K*K, , + K"K\ - K., 0
N—— N—— ——

%<K’K>;V %<K7K>§# %(Ku;V_KU ;p.)
or equivalantly
_KH<K7 K>;V + KI/<K7 K>”u, + <K, K>(KM,V —_— KV;H) = O .

This can be written as

().~ ), e ()

This implies

K’ = (K, K)df = (K, K)dt

Conclusions: (for df = dt):

e The flow @, of K maps the hypersurfaces ¢ = const in an isometric way.
e An observer at rest propagates along integral curves of K.
e If there exists a time-like Killing field satisfying eq. (5.37), there exists a

Kb
(KK) -

prefered time t with dt =

e For § = {t = const}, the Lagrangian coordinates introduced for the station-
ary case lead, in the static situation, to a metric of the form

ds® = goo(Z)dt? + gi;(T)da'da? (5.40)

that coincides with our naive definition of a static metric.

5.5 Local frames and Fermi transport

Here we discuss the questions of reference frames and inertial forces.

Let us consider an observer in a space ship that moves along a time-like world line
in a gravitational field, not necessarily along a geodesic. This observer defines a
coordinate system fixed to the space ship in which all his apparatus is at rest. We
ask the following questions:
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1. What are the equations of motion of a free falling test particle in this coor-
dinate system?

2. How should we orient the space ship to avoid any centrifugal and Coriolis
forces?

3. How does a free top spin?

4. In a stationary gravitational field, can we find a preferred rest frame? In
which case does the top precess in this frame and what is its equation of
motion?

5.5.1 Equation of motion of a spin in a gravitational field

The spin can be the expectation value of a particle’s spin operator or a classical
angular momentum vector (a gyroscope).

The spin is firstly defined in the rest frame of the particle (or the gyroscope). In
this frame, it is given by a three-vector, S. In the absence of external forces, it
does not vary in the rest frame

d =
aS(t) =0 (in the rest frame). (5.41)

—,

We define a four-vector S that reduces to (0,.5) in the rest frame of a particle
moving with the four-velocity u. We have then

(u, 5) =0. (5.42)

In the absence of gravitational fields and in the rest frame where u = (1,0)
d, (d dz)  [(dg =
(VuS)r = dtS_ (dtS ’dtS) = <dtS ,O) .

0= V.(u,S) = (Vuu,S) + (u,V,5)

a

But

where a is the acceleration. We then have
(u, V,S) = —(a,S) (5.43)
But in the rest frame,

ds°
<VUS, U>R = —E = —<CL, S> .
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This gives
(VuS)r = ((a,5),0) = ({a,S)u)g - (5.44)
Equation (5.44) is covariant. Hence it is valid in any reference frame, and according

to the equivalence principle, it is also valid when gravitational fields are present.
The covariant equation that we wanted to find is

V.S =(a,S)u, a:=V,u. (5.45)

It is obvious that (5.45) is compatible with (5.42).

Application: The Thomas precession (in special relativity):
We consider a particle (top) that moves with four-velocity u in the absence of
gravitational fields. Then we have

. 1
u = (1, = —— ,B*<1 5.46
v(1,6) Vi B (5.46)
In the rest frame Sp = (0, S(t)).
In the reference frame of the laboratory, Sy, is obtained by the boost A(—/5(t)):

_ . 7.3 3.7 72 3. a
S=5 = (4 &sw(wl)w 3)). (5.47)

With o |
a=i= (4,45 +v8) = guﬂ(o, 3) (5.48)

we get, using (S, u) = 0:

(8,0} = (8,d) = 9((0,5), 8) = (5§ + = (5 H)(F - 5)
Eq. (5.45) gives for the 0 component
7.8y =43-S+ =5 *-5*) 5.49
08y = (5-5+ 25(5-5)33) (5.49
and for the spatial components
S+(-8py =7 (554 2G-HE-9) . 6
v+1 v+1
Combining (5.49) with (5.50) gives (exercise!):
S§=38Adp, with (5.51)
— 1= .
Gr=1""FA8 (5.52)

wr is the Thomas precession frequency.
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5.5.2 Fermi transport

Definition 5.6 (Fermi derivative) Let v(s) be a time-like path with tangent
vector u =", (u,u)=—1.
Let X € X(M). The Fermi derivative of X along 7 is defined by

F,X =V, X — (X,a)u + (X, u)a, (5.53)

with a == V,u.

As (S,u) = 0, the equation (5.45) is equivalent to
F,S = 0. (5.54)

It can easily be seen that the Fermi derivative has the following properties:

1. If v is a geodesic, F, = V,.

2. Fbu=0

3. If (u, X) =constant along ~, then (F, X, u) = 0.

4. U F, X =F,Y =0 along v, (X,Y) is constant along ~.

5. If F,X = 0, (X,u) is constant along ~. (This is not the case when X is
parallel transported unless 7 is a geodesic for which the two notions coincide)

6. If (X,u) =0 along ~,
F, X = (V,X). (5.55)

where | means orthogonal projection on w,

vy =v+ (u,v)u.

Definition 5.7 (Fermi-transported fields) A vector field X € X(M) is called
Fermi-transported along v if
FyX = 0.

This is a linear (ordinary) differential equation of X, and it has thus a global
solution. Similarly to parallel transport, there exits a group of isomorphisms

7;{1 (T M = TypyM = X(y(s)) — 7;1;)((7(8))
with q
Fs X(v(t) = ag7§1)((7(5)) : (5.56)

s=t
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Much like with parallel transport, we can extend this definition to tensor fields of
arbitrary rank, such that

is a linear isomorphism and

d
FiT ) = 57{@(3) _, forTeTim. (5.57)

=t

Thus defined, the Fermi derivative of tensor fields has the following properties:

1. For T'e /M, F, T € T/M

2. F,(S@T)=F,ST+S®F,T

3. F, commutes with contractions

4. F.f = % along ~, for f € F(IM).
We consider the world line v(7) of an accelerated observer with four-velocity u = 4.
The quantity 7 is proper time such that we have u? = —1.
At each point (7) along v we define 3 orthonormal vectors e;(7) € T’ MM
which are normal to u such that (e;u) = 0 and (e;e;) = d;;, The vectors (e;)7_,
define an arbitrary orthonormal reference frame along v, normal to u =: ¢y (the

reference frame of the space ship).
We then have (e, e,) = 1,,. Clearly,

1
(a,u) = évu<u,u> =0, a=V,u.

We define
Wij = <Vu€i, 6j> = —Wj; - (558)

With e* := n*”e,, we obtain

vuei — <Vu€i7 e'u>€u - _<vuei7 u>u + <vuei7 €j>€j
= (e;, a)u + wjje; . (5.59)

Defining

, (5.60)

this leads us to
Vo = —(ea,t)a + {(eq, a)u + wape” (5.61)
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or, using (5.53)
Fuea = Wage” . (5.62)

The quantity w,s therefore defines the deviation from Fermi transport. For a free
gyroscope, we have F,S = 0. Because (S,u) =0, S = S’;, and we obtain

ds’ ds’

0= dr €; + Silﬁ‘uei = Eei + Siwijej,
which gives
457 .

In other words, a free gyroscope precesses relative to {e;} with the angular velocity
Q) given by

= =5ArQ. (5.64)

If the reference frame (e;) is Fermi-transported, O = 0, and our gyroscope does
not precess.

5.5.3 Staticity and stationarity

We consider a gravitational field with a time like Killing vector K and an observer
at rest with respect to K, i.e. an observer who moves along a world line (1)
tangent to K. The four-velocity w is then given by

1
U= ———=K. (5.65)
o <K7 K>
We consider again an orthonormal reference frame, (e;)3_;, along v. We demand
that

From the Killing equation, it follows that the orthogonality of the vectors e; is
conserved along ~:

0= (Lrgg)(X,Y)=K(g(X,Y)) —g(LxX,Y) —g(X, LxY)

using (5.66) we get 9, (gy(r)(es(7(7)), &;(7(7))) = 0.
In the same way, the orthogonality with K and therefore with u is preserved.
The e; are axes at rest. They define a ” Copernican system” of the fixed stars.
We compute the change in the components of the spin S = S’e; in this reference
frame. With (5.65) and (5.58) we have
1
wij = —=——=(¢;, Vce;)

_<K7 K>
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But
0= LKei = [K, 6,’] - VKeZ- - VeiK y
such that
1 1 )
Wij = —<€j7veiK> = —— VK (ej,ei) .

In order to render the antisymmetry of w;; explicit we write

wy = gk VK (6,0 ~ VR (ee))]  with k= V(KK . (56)
In general, we saw that (geometry, eq. (4.10)) for a 1-form «
(Va)(X,Y) — (Va)(Y, X) = —da(X,Y).
Hence w;; can be written as

1
Wij = Ek_lde<ei76j) . (568)

We consider the dual basis of (K, ¢;), (K, 6%). The 2-form dK” has, in general, the
form . A
dK" = ki AN +a NK” (5.69)

for antisymmetric functions r;; and a 1-form a. The condition of staticity, K” A
dK’ = 0 then is equivalent to x;; = 0. But dK”(e;, e;) = 2k;; and so
Wiy = k‘illiij. (570)

This implies that w;; = 0 if and only if K’ A dK” = 0.

According to definition 5.5 therefore, a gyroscope does not precess relative to a
Copernician system if and only if the gravitational field is static.

In other words, a reference system at rest with respect to a non-static stationary
gravitational field is rotating. With w;; = 5iijk it follows that

5”kwij =20F and

1 ..
Qk == ﬁ&’”k/ﬁ)i]’. (571)

Explicitly in coordinates, for K = 0;:
ds? = goo(Z)dt? + 2g0;(T)dz’dt + gi;(F)dx'da?
K’ = goodt 4 gosda’ .
Anti-symmetrisation of VK yields

1 ) .
AR’ = oo kdz® A dt + 5(907; j — Goj.i)dx’ A dx'
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_ goo’kdxk A (goodt + goida’) + = <gom' — oy — 900,590 T goo, go;) ded A dx
oo 2 goo Joo

= oz/\Kb—i—/ijida:j A dat

o — 0 (9_0> _(@)
Y 2 goo / ; goo / ;

Generally, these x;; do not correspond to the r;; defined in eq. (5.69) because the
0; do not form an orthonormal basis. But if we consider the weak gravitational
field limit, goo = —1. g0 < 1, and g;; = 1, ¢;; < 1 for i # j, the basis (0;) is
almost orthonormal. In this case, we get, to the first order,

~ 1
= 581']‘]690,'7]'8]4; (572)

with

where

— 1 bd — . g
() =~ §V ANg, with g := (go1, 902, G03)-

This is the Lense-Thirring effect, often called the ’frame dragging’ or 'gravito-
magnetic effect’. The components go; of the gravitational field of a rotating star
are proportional to the angular momentum J of the star. To the frame dragging
one has to add the geodesic precession, which is of the order of ' A ﬁqﬁ. We can
compare these two effects for the terrestrial gravitational field :

Lense-Thirring GJg

geodesic B(M@G)3/2Ré9/2
The ’Gravity-Probe-B’ experiment performed by the NASA has measured the
Lense-Thirring effect. The final results which perfectly confirm GR are finally
available (see e.g. http://einstein.stanford.edu/highlights/ and Ref. [9]). In 2011,
after 6 years of data analysis, the geodesic precession has finally been confirmed
with a precision of about 0.3%, and the Lense-Thirring (frame dragging) effect is
measured with a significance of more than 5 standard deviation:

—6x 1073 .

Wgeo = —6601.8 £ 18.3 milli-arc-seconds per year,
wgg = —37.2 4 7.2 milli-arc-seconds per year.

The theoretical predictions are 6.606 arc-seconds per year for the geodesic pre-
cession of and 39 milli-arc-seconds per year for ’frame dragging’ (Lense-Thirring
effect).

Summary

e A gyroscopic compass has constant components relative to a reference frame
(e;)2_, if and only if the (e;) are Fermi transported along the world line of
the observer (who carries the compass).
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e In a frame at rest relative to a stationary gravitational field (Copernician
reference frame, fixed stars), a gyroscope rotates with an angular velocity €
defined in egs. (5.68), (5.70) and (5.71).

e The gyroscope does not rotate in a rest frame relative to a stationary gravi-
tational field, 2 = 0, if and only if the gravitational field is static.

5.5.4 Local reference frames

We now wish to determine the equations of motion of a free falling test particle,
seen by an observer on an arbitrary world line p(7). We want to work out the
effects of general relativity. We therefore determine the local reference frame of
the observer and the metric in a neighborhood of the world line.

As before, let p(7) be the world line of an (accelerated) observer, u = p her 4-
velocity, u> = —1 and a = V,u. Let (e;)?_; an arbitrary orthonormal reference
frame, (e;, e;) = d;;, normal to u = eg, (u,e;) = 0.

At each point p(7) we consider a geodesic a(s) normal to u, where s is the arc
length, i.e. ¢ =1 (& =42) and (&(0), p(7)) = 0 (a(0) = p(7)).

By a(s,n, ) we designate the geodesic passing through p(7) in direction n, &(0) =
n, a(0) = p(7) with arc length parameter s

0
n = (a—> s n2 =1.
S a(0,n,T)

Every point p € M in the neighborhood of p(7) is on one and only one of these
geodesics « (see figure 5.5).
We fix the coordinates of p = a(s,n,7), n = n'e;

(2°(p), 2" (p), 2*(p), 2°(p)) = (7, sn, sn?, sn%) (5.73)

That is,
2°(a(s,n, 7)) =7 (5.74)
' (a(s,n, 7)) = sn’ = s(n, e;) . (5.75)

5.5.5 The Christoffel symbols and developement of the met-
ric along a world line

Along p(7), s = 0, we have by construction

9, 0
5 = G B0 = U (along p). (5.76)
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Figure 5.5: A world line p(7) with transversal geodesics a(s,n, 7).

This yields
Guv = (O, 0y) = 1w (along p).
Along p we then have
Viea = Vesea =T e5

and
(eg, Vyea) = np, I, -

Hence

gy = —(u, Vyu) =0

oo = (€5, Vuu) = (¢j,a) = o’ (‘along 7).

ng = —(u,Vue;) = (Vyu,e;) = a
Moreover,

Wi (559 (Vyei,e) = 5iijk = Féi )

Along a geodesic (T, s,n), 7 = const, n = const we have
2 v A
0= d“z# LT dx di
ds? ds ds
Since (z#) = (7, sn’), such that d*z*/ds* = 0, this gives

Mot J
In'n? =0 (along p).
Because n' is arbitrary this implies

I =0 (along p).

(5.77)

(5.78)

(5.79)

(5.80)

(5.81)

With the help of these Christoffel symbols we are able to find the partial derivatives

of the metric:
0= Guvx = Guv X — Fz)\gua - FS)\gua .

Using equations (5.77) to (5.79) and (5.80) this gives along p

gooo =0 ‘
Guv 0 = F,Ojonoa/ + Fgo%a = goi 0 = —a'+a" =0

gij.0o = €ipQ" + £ = 0
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Along p

Juw o =70
i1 = Timug + Fgf’?m =0
oo j = 2Uh1u0 = —20d’
905 &k = Llyug + Theniop = €rji?’ (5.82)
In the neighborhood of p(t), the metric is then given by
ds? = —(14 23 - £)dt* + 2e4;;,Q 2" dtda? + 6;;dx'da? + O(|Z|*)da"dz” . (5.83)

The acceleration contributes as dggg = —2a - 7.
If Q # 0, the axes e; of the observer are rotating, we have the non-diagonal
components

Jo; = €jiinZEk = (Q A f)j

If a = Vyu =0 and § = 0 we obtain an inertial reference frame along p(t) with
G = T T3 = 0.

In other words, an observer finds himself in an inertial frame of reference if he is in
free fall, V,u = 0, and he Fermi-transports his coordinate axes, (e;), (& w;; = 0).
As a = 0, for a free falling observer, Fermi transport is equivalent to the parallel
transport.

5.5.6 The equations of motion of a test particle, inertial
forces

As before, p(t) is the world line of our observer (astronaut in a space ship).
She observes a freely falling particle:

d%ar 4 dz® dx?
4+ T =
d\2 B aN d

(5.84)

She measures the velocity of the particle using her time coordinate, t. We define
dt
Y=o

With % =7, ‘é—ﬁ\l = dd—‘”tl’y =: vly, (5.84) becomes

ot Ldydet o detde?
de2  ydt dt B dqt dt

For = 0 this gives, using (5.81)

1d ‘
—;d—z = 2T%0 + 19, . (5.85)
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For = j, we find, using (5.85)
e vl (T5 + 2T5v") + Tfg + 2T 0" + Tv'0k =0 . (5.86)

We evaluate (5.86) in the neighborhood of the world line p(t) and we consider
slowly moving particles, | v |< 1. We expand (5.86) to the first order in & and v:

dvi 4 4 . .
=0T Tl = (Thow| ) -a"—2mh| o (587)
= —a’ — 2, Q%" — <F%O’k 5:0> "
Ty, can be related to the Riemann tensor:
R5 = %5 5 = Dy 6 + 155 — L35, -
Then ' ‘ . ' .
Toox = B oro + Ton o — Diplo0 + I3, T
~—~—  N—— ——
erjiS 0 alakteijiQepim
at © = 0.
. . . . - d
Substituting everything in (5.87), we finally get ( ~ = %)
G=—dl+a 7)) —20AG-ONT—GA(GAT) +T 5.88
1+a-5)-20A5 Grd)+f  (589)
) @)
where ‘ A
=R 2" (5.89)

The first term is the inertial acceleration with the relativistic correction a - whose
origin is in the correction of the metric (5.83).

The terms with € are identical to those in classical mechanics, (1) is the “Coriolis
force” and (2) is the “centrifugal force”.

The force R’ oroX” is the consequence of the inhomogeneity of the gravitational
field. It is the “tidal force”.

If the axes (e;) are Fermi-transported, the inertial forces that involve Q) vanish,
() = 0. If the observer moves along a geodesic, a = V,u = 0, only the tidal
force remains. It is not possible to get rid of it by a coordinate transformation.
Therefore it represents the “true”, coordinate independent, gravitational force.



Chapter 6

Einstein’s field equations

Until here we have studied the laws of physics in the presence of an external
gravitational field using the equivalence principle.

In addition, the gravitational field (potential) (g,,) is determined by the amount
of energy and momentum of the universe (together with boundary conditions). To
find the equations that govern the relationship between g,, and energy-momentum
tensor T}, we use the equivalence principle, the Newtonian limit and the covariant
version of the “conservation” of energy and momentum.

6.1 Heuristic derivation of the Einstein field equa-
tion

We first reformulate the result we have found in the previous paragraph for an
observer in free fall and an orthonormal basis (e;)?_; that is parallel transported:
let p(t) be a geodesic and p(t, s) a congruence of the neighboring geodesics, p(t) =
p(t,0). For each value s, the path t — p(t,s) is a geodesic. Let

u=p=p0 ,u>=(u,u) = -1, and w = p,0, (6.1)
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Let n = w + (w, u)u be the distance vector normal to u:
n =n'e.
We wish to establish an equation for the evolution of this distance vector n.

Because of eq. (6.1) [u, w] = 0, which implies that V,w = V,u. As V,u = 0 this
leads to
V2w =V, Vot = (VoVi — VoV )u = R(u, w)u . (6.2)

Similarly with n we have
Lyn = [u,n] = [u, (w,u)u] = u({w,u))u .

But {
uw(w,u) = (Vyw,u) = (Vyu,u) = évw(u,w =0,

that is
L,n=0=V,n—V,u (6.3)

By analogy with (6.2) we get
Vin = R(u,n)u .

In our basis n = n’e;, and because the e; are parallel transported along u,

Vun =u(n')e; = d—Zei and V2n = d; e; .
With ey = u we then obtain
d%nt ‘ o
d_;;ei = n’R(eo, ej)eq = ' R gg;€i o1
dni -y
52 = n! R o5 - (6.4)

This equation describes the relative acceleration of neighbouring test particles in
free fall. It is called the 'geodesic deviation equation’.

We compare this with the Newtonian theory. There we have
B = —(0:%)z
it = —(0;9)za -
By substracting one from the other, we get

il = —(0®) 7 + (0i0)7 = —(0,0; D). (6.5)
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Comparing this with equation (6.4) suggests the following analogy
By taking the trace on both sides we find the correspondence
Ryg <= A®.

In the Newtonian theory, the gravitational potential is determined by the Poisson
equation:
A = 47TGP = 47TGT00 .

Leading to
ROO = 47TGT()0 . (66)

This motivates the covariant equation
R, = 47GT,,. (6.7)

Actually, this equation cannot be correct, because R*” , # 0 and 7" , = 0 in
generality. Therefore, (6.7) needs the following modification:

1
Ry, =81G(T,, — §9WT)7 where T =T . (6.8)

In the Newtonian limit, Tog = p, T = T9 = —p, goo = —1, so that, for uv = 00 eq.
(6.8) is again reduced to (6.6). Eq. (6.8) is equivalent to

1
R, — §gWR = 81GT,,. (6.9)

The equations (6.9) or (6.8) are the Einstein field equations.
We have defined the Einstein tensor, G, = R, — % g R so that we obtain

G = 81GT,, . (6.10)

We have already shown that the contracted Bianchi identities are equivalent to
G* ., =0.

Uniqueness: One can show the following fact:
let 2,,[g] be a symmetric tensor which is built only with g,, and with its first and
second derivatives and that satisfies 2, [g]” = 0. We then have

Duwl9] = Gy + bg,  where a, and b are constants
Therefore, the Einstein field equations necessarily take the form

G —Ngy = KT}, Kk =28nG, A=b/a. (6.11)
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The value of k is determined by the Newtonian limit

A® = 4rGp + A.

A
4nG”

This quantity plays an important role in current cosmology. But because ‘ﬁ‘ N

The constant A plays the role of a homogeneous mass density, p.g =

1072 (31%13’ we can neglect it when we are mainly interested in the gravitational
8

effects over stellar distances with p < po = 1d3s.

Equations (6.10) and (6.11) are, even in vacuum, (7}, = 0), non-linear partial
differential equations. I believe that even today, many of their consequences are
still not fully understood. In some cases, the non-linearity can be interpreted as
the coupling of the gravitational field with its own energy-momentum density:.

A complete analysis of the Einstein field equations is difficult (I will only mention
some of the main results). Exact solutions are only known for symmetric situations.
Fortunately they are the most relevant in astrophysics and cosmology:

1. The Schwarzschild metric (see next chapter): a static, spherically symmetric
solution; it describes spherical stars and black holes.

2. The Kerr metric: a stationary solution with rotational symmetry; it describes
rotating stars and black holes

3. The Robertson and Walker metric: a homogeneous and isotropic solution,
describes Friedmann-Lemaitre universes that are expanding or contracting.

4. (Anti-)de Sitter spacetime. 7, = 0 and A > 0 (for de Sitter) or A < 0 (for
Anti-de Sitter).

There are many more exact solutions, see [15].

6.2 The Cauchy problem

The problem is the following: let § be a 3-dimensional Riemannian manifold with
metric 7;;. In addition, let the functions vo,, Vw0 be given (ij = 1,2,3; p,v =
0,1,2,3). Is there a Lorentz manifold (M, g) and an embedding o : S — M such
that
OxYuv = Guv and OxYuv ,0 = Guv,0 ON U(S)
and
G, =87GT,, (6.12)

on M ?
In other words, does a solution to the problem (6.12) exist, with inital conditions
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(S,7:70)7
We first note that the Bianchi identity gives

Gy = —G", —TLG™ — T, G (6.13)

Because the right hand side of these equations contains at most second derivatives
with respect to time (¢ = x°), the components G*° contain at most first derivatives
of g, with respect to time. The equations

Guo = 87TGTM0 (614)

are therefore constraints on g,, and g,, o, constraints that have to be satisfied
on o(8S) for a solution to exist.
We are then left with 6 evolution equations,

that determine the evolution of the ten components of g, in time.The solution is
therefore not uniquely determined. One must impose four gauge conditions, which
precisely corresponds to a choice of coordinates!

For a “compatible” gauge choice and initial conditions (g,., g, o) that satisfy the
constraints (6.14), with a “reasonable” energy-momentum tensor one can always
obtain a local solution of (6.15). Equation (6.15) is a second order system of differ-
ential equations that is hyperbolic for the six g, that are not fixed by the gauge
choice.

The existence of a local solution is not so difficult to prove, see e.g. [7]. But any
global results are rather deep and limited.

An example of a gauge choice is the harmonic gauge defined by the four condi-

tions
(vV=99"),=0. (6.16)

By taking the time derivative of these conditions, we obtain

(V=99") 0=~ (V=99") 4 - (6.17)

With this and the six equations G;; = 87GT;;, that are differential equations of
second order in time for the variables g;;, we then have 10 second order equations
that determine the 10 functions g, for given initial conditions.

6.3 Lagrangian formulation

One can also obtain Einstein’s equations by a variational principle from the so
called Einstein-Hilbert action,

S = /d4x\/_ (erLm) . (6.18)
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Here R is the Riemann curvature scalar and L, is the Lagrangian density of matter.
By definition, its variation with respect to the metric gives the energy momentum
tensor,

2 OW=9Lm) _ (6.19)

00w
Exercise: Show this for the Maxwell Lagrangian,

1 1
Lin = Lawm = =7 F" Fluy = —ZFWFagg“agB” :

(in Heavyside units) where as

elm

v 1
T = 9" FopF™ + 19" Fop

We now show that if we may disregard boundary terms,

OWZIR) _ _ aam (6.20)

0

To see this we proceed in three steps:
0 (V=9R) = (0v/=9)Rapg®” + v/ =9(0Rap)g™ + v/=gRasdg™" .

1. We first determine § (/—g).
To simplify the notation we denote the matrix g,, here by g, and its inverse
by g7 = (9"). We consider a path of metrics through g and parameterize
it as g(A) = exp(AC)g, where C is a 4 x 4 matrix. In the vicinity of g
every matrix is of this form, just set g(A\)g~! = exp(AC). We then have
det g = exp(AtrC') det g, such that
dg

% det g = trC exp(AtrC') det g = tr (ag_l) det g = g’“’% detg.
(6.21)

Since every small variation dg is of this form, we obtain

1
dy/—detg = SV~ det g0, - (6.22)

2. Rag(;gaﬁ.
We use g*%ga,, = (55 such that 0 = §9*°ga, + g*?0ga, which yields

59045 — _gaugﬁﬂé‘gyu . (623)

These two terms put together already give —/—gG*""0g,,, it remains to show
that g""0R,, is a surface term.
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3. g"OR,,.

To show this is a surface term, we remember (3.41) which implies that the
Christoffel symbols of the metric connections of the metrics g,, and g,, =

Guv + 09, are related by

_ 1 _ _ _ _
Thy=Ths+ 50" [V50gar + Vadgs — Vibgas] = Thy + Chy. (6.24)

2

To linear order in dg,,, we then obtain the following relation for the Riemann

tensors, B B B
R op = Rop — VaClj, + VsCo, . (6.25)
Contraction gives
Rug = R#ﬁ + 5Ru5 = Rﬂg — vanu + ?5C§‘u . (626)
With this we obtain
§"06R,s = V5 [§"°CS, — g"*Cl] =Va’. (6.27)

If we can neglect surface terms!, this term does not contribute to the field equation.

This proves our assertion.

|

This Lagrangian formulation of Einstein’s field equations is especially important
for the problem of quantizing gravity, but also for the development of modified
theories of gravity. Furthermore, the definition (6.19) automatically gives the
symmetrical energy momentum tensor of matter which appears as source on the
rhs. of Einstein’s equations. Remember that the canonical energy momentum

tensor need not be symmetric.

LA covariant divergence of a vector field (but not of a 2-tensor!), v?

8 is a surface term since
;

Jur d"ac\/—gv;% = [y d'x (\/—gvﬂ)’ﬁ = [5ur dov’ng, where n is the normal to M. To verify

the first equal sign one has to show that \/—gI'}j, = 9,,/—g. We leave this as an exercise.
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Chapter 7

The Schwarzschild solution and
the classical tests of GR

7.1 Derivation

We search for a static spherically symmetric solution of Einstein’s equations in
the vacuum (7, = 0). This solution describes the exterior of a static star with
vanishing (small) angular momentum, like e.g. the sun.
We choose the manifold
=_R R 2
M x Ry xS

t T (197<p)
and make the following ansatz for the metric:
g = —eMat? + 2 dr? 4+ 2 (de? + sin® 9dp?). (7.1)

The variable r is chosen such that a sphere of radius r has the surface 4mr?.
The functions a(r), b(r) should obey the boundary condition a(r), b(r) = 0 such
that the spacetime is asymptotically flat. With

1 v
I, = _gu (80491/,5 + aﬁgau - al/gaﬁ) 5

af 2
we find

Ffw = —sindcosy Ty =TI7,=cot? (7.2)

r — . 1
I, =—c¢?rsin®y I¥,=T% = . (7.3)

1
[hy=—er Tl=TIj == (7.4)

r
Iy, =e*@ e 1! =T =d (7.5
rr=v. (7.6)

113
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All other Christoffel symbols vanish. Inserting this in (see eq. (3.27)
R,, = 0.1, —9,I2, + T —T% 1"

pre af av )

we obtain

Ry = (ez(afb)a/)/ + a0y (b’ +a + 2) — 2¢2(a=b) /2
r

— e2(afb) {a”—i—a’Q + 2_CL/ - a/b/:|
T

/

2b
Rrr — —CL” o a/2 + = alb/
T

Rﬂﬂ - 1— —26 (b/ ) —2b
Ry, = sin®d[l—e®+ (¥ —d)re™].

The vacuum Einstein equations imply R, = 0. Using 2= R. + R,. =0 we find

a' +b =0, with the boundary condition this implies @ = —b. Inserting this in Ryy

we obtain 1 = e=2° — 2b're=2% = (re=2)" which we integrate to
2b 2m 2a

r—2m=re ", b1 - =¢
r

(7.7)

Here m is an integration constant. With (7.1) and (7.7) we now have the solution

2 dr?
g=— (1 m) dt* + % + 72(d¥? + sin? 9 d?). (7.8)

)
Eq. (7.8) is the famous Schwarzschild solution (K. Schwarzschild, 1916).

In order to interpret the integration constant m, we remember that in the weak

field limit, r > m,
20 GM
—900—1+—_1—2 R
re

therefore oM

One can show (Birkhoff’s theorem) that the Schwarzschild metric is the only spher-
ically symmetric solution of the vacuum Einstein equations. Hence a spherically
symmetric vacuum solution is necessarily static.

The metric (7.8) is often also written in the following form:

We set

p==(r—m+ (r* —2mr)'/?).

1
2
2 m\ 2
2 =3
Where r=p , 1——m: i’f .
r 1+2_p




Ruth Durrer General Relativity Chap. 7 115

With (7.8) this yields

2
1—- 4
2p 2 m 2 2 192 2 s 2 2
= —22] dt 1+—] (d dv Jd
g <1+m> +< +2p) (dp” +p + p” sin” 9dp?)

= —h2(|Z))d? + £2(|))d7? (7.10)

or

= () =1 () o ()

( ) 1+2|z| 4 |z| T 6 || || (711)
A7) = (1 + %) =142y +37 (ﬁ) +0 (ﬂ)

wherea = =~v=+"=1.

Tests of General Relativity are often in terms of limits on these "post-Newtonian

parameters”.

The value of o = 1 is simply a consequence of the Newtonian limit. At present,

the other parameters are experimentally constrained by |y—1| < 2-1075, |7/ —1] <
2-1073 and |B — 1] < 3-1073 (see e.g. [18]).

The solution (7.8) seems to have a singularity at the Schwarzschild radius, r = Rg,

given by
2GM 2G'M,
: Rs(My) = =3 -

Rg =2m = = 2.9km. (7.12)

We shall later see that r = Rg is simply a coordinate singularity. An indication of
this fact is that the components of the Riemann tensor rest finite at r = Rg.
Nevertheless, the sphere r = Rg has an important physical meaning: no informa-
tion can penetrate from r < Rg to r > Rg. The Schwarzschild sphere, r = Rg
forms a horizon: all information which passes through r = Rg is lost from the
outside (loss of information? unitarity?).

7.2 Test particles in the Schwarzschild metric

The equation of motion of a test particle is the Euler-Lagrange equation for the
Lagrange function

L= §gw,jfuity .

In our Schwarzschild geometry this results in

om\ 2 .
2= — (1 . —m) 24+ — g + 1297 + sin 05?) . (7.13)

T

Along the path x#(7) we have (for a massive particle)

—2r=1. (7.14)
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The equation for 9, (g—@' — g—g = 0, yields
(r29) = r?sind cos ¥$? . (7.15)

By choosing the initial condition (which corresponds to a coordinate choice (9, ¢))
¥ =%, ¥ =0, we obtain

J=0 andso ¥ =0, therefore = g (7.16)
solves the v-equation. With ¢ = 7 we have
2m\ 72 9.9
2=~ (1= ) B4 gy 1% (7.17)

Here t and ¢ are cyclic variables; they determine the following first integrals:

oc

" r%p = const = L (7.18)
(Kepler’s area constant) and
) 2m\ .
¥ ( . ) cons (7.19)
With (7.14) and (7.17) this yields
E2 ,r',2 L2
— ——=1 7.20
(=) - 2
i+ V(r)=E? (7.21)
With )
2m L
Vir)=(1—— 14— 1. 7.22
0GB e
We wish to determine the curve (). We use the notation ' = %. So that ' = %,
r=r'p= ”:—QL With this, equation (7.21) leads to
?”/2L2 )
. E*—V(r).
We set u = % Then r' = —Z—; and v’ = —r'/r?. Inserting this above yields

L*u'? = E? — (1 — 2mu)(1 + L*u?) ,

E*-1 | 2
u'? 4w’ = B I 2ma

(7.23)
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Differentiating eq. (7.23) with respect to ¢ we obtain

2m
2" + 2uu’ = ——u' + 6muy’.

72
Either
uw' =0 (circular motion) (7.24)
or m
u" 4+ u= 2t 3mu?®. (7.25)

Let us compare (7.25) with the equivalent equation of motion for Newtonian grav-

ity, ® = —%
1| /dr\? o [(de 2

r?
Here ¢ is cyclic and i—fﬂ = L = const. The equation for r yields

d?r dp\> do
With 4 = g—; : d—f = :—;L = —Lu’ and % = —Lu”fl—‘f = —L*u"u?, the eq. (7.26)
leads to
1 dd m
UH +u = L%ﬂ% = ﬁ (727)

The relativistic correction to this is the term 3mu?. This "perturbation” is very
small,

2

3. 5. (r¢)
3mu? 2712 _ 2 :\2 Av
m/L2 = 3u“L —T—2(7’ 90) =3 2

(N 2 _8
=3 (—) = 7.7-107° for the planet Mercury.
c

We can interpret (7.25) as the equation of a Newtonian motion in the potential

m  mL?
P =——— -
r T

(7.28)

7.3 The perihelion advance of a planet

From classical mechanics we know that the only central potentials for which all the
orbits are closed are the Newton potential, ®y = —* and the harmonic oscillator,
@y = k*r? (Bertrand’s theorem). We expect that

(o + 21+ Ap) =r(p)
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with Ay 7é 0. The value Ag& is the perihelion advance. We calculate Ay to the
mL

The solution of (7.27) (Kepler’s ellipse) is

1
u=—(14+ecosyp) (7.29)
p

with p = %2 = a(1 — €?), where a is the semi major axis of the ellipse and e is its
excentricity. Introducing this solution for the perturbation in eq. (7.25), we obtain
m  3m3
u’ +U—ﬁ+7(1+2(3008§0+620082g0) : (7.30)
Particular solutions of the equations

3m3

"
U+ u= 62}1 ecos<p
3’” 32 cos?

are
3m
LA
- 3m3 .
u = “frepsing
3m3 2 (l _
L7 2

1
5 COS 2ap) .
Adding them together we obtain

3m? e m? 3m?
uz(p) = L2 Ltecosp+—5 |1+ 5 | = 575¢ % cos 2¢ + 7 epsing

Let us consider a first perihelion passage at ¢ = 0. The next one will be close to
27 but not exactly at ¢ = 2w. The perihelion is defined by ' = v/ = 0. Inserting
the solution u, we obtain

, me 2

. m
Uy = ——5 [SINY — —

72 73 (esin2¢ + 3sin g + 3¢ cos go)}

Setting ¢ = 27 + Ay for the second perihelion passage we obtain to lowest order
in the perturbation

3 2
sin Ap — %2# =0.
Since Ay is small we obtain
6rm? 6
Ap = LRIk for each period. (7.31)

L? a(l — e?)

For Mercury a is the smallest, so that in the solar system this effect is largest for
Mercury’s orbit. Inserting numbers we obtain

(Ap)pe] = 42,92"  per century. (7.32)
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The perihelion advance of Mercury due to Newtonian perturbations caused by the
other planets (mainly Jupiter) is about

(A@)pert. newt. == 531" per century,
(AQ)measured = 974"  per century.

The less than 10% discrepancy between the Newtonian theory of gravity and the
observations was the only observable indication of general relativity before 1915.

There is also a perihelion advance of Mercury’s orbit that is caused by the solar
quadrupole. But according to recent measurements of the Sun’s quadrupole, this
effect causes a perihelion advance of less than 1” per century.

”... dass die Gleichungen die Perihelbewegungen Merkurs richtig liefern! Ich war
einige Tage fassungslos vor freudiger Erregung.”
(A. Einstein to P.Ehrenfest, January 1916).

7.4 The deflection of light

For light rays we have £= $g,,@"%" = 0. Instead of (7.23) we obtain

E2
u'2+u2:§+2mu3

and, after taking the derivative with respect to ¢,
u” 4+ u = 3mu®. (7.33)
The right hand side of (7.33) is very small

3mu2 _ SRS < &

~10°
u 2R ~ R@
By substituting it with 0 we obtain
L.
u=ysing, (7.34)

the straight line with impact parameter b indicated in the following figure.
Inserting (7.34) in the perturbation 3mu? in (7.33) we find

3
4 u = b—T(l —cos? ) =

3m

T (1 — cos2¢p)
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sin

Figure 7.1: Deflection of light

with particular solution

3am 1
Uy = o2 (1—1—5005290) .

To first order in the perturbation, we obtain

1 3m 1
u = Esmgp—i—@ 1—|—§(30324p .
In the limit » — oo, the angle ¢ becomes very small, so we can use sin ¢ ~ ¢ and
cos2p ~ 1. In that case, for r — oo, u — 0 this yields

1 2m 2m

0= 6(,000 + b—2, Poo = —T. (735)
4m 2R5
0=2|Ys| =—=—=. 7.36
oo = 2 = = (7.3
For the Sun, this gives
1,75
= ) 7.37

This result can also be obtained by using the linearized theory, contrary to the
perihelion advance, that is sensitive to the non-linear behavior of the theory. In
order to observationally verify the deflection of light, one must compare the ap-
parent positions of nearby stars during a solar eclipse with their usual position on
the nocturnal sky. This was successfully performed for the first time in 1919 by A.
Eddington and F. Dyson.

7.5 The time delay of a radar echo (Shapiro time
delay)

Another relativistic effect that has been tested very precisely is the delay of a
radar signal emitted from Earth towards a satellite which it is reflected back to
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Earth

real / observed
O - positions positions

Figure 7.2: Apparent change in the angular distance of two stars in the neighbor-
hood of the Sun.

7’1/////// 70 )
Earth Sun satellite

Figure 7.3: Delay of a radar signal when it passes close to the Sun.

the Earth, in the case when the signal passes close to the Sun (see figure 7.3). Let
us calculate the delay of the signal on its round trip. We first determine the time
coordinate t15 that elapses during the propagation of a photon from r; to ry. For
an observer far from the mass m, r/m > 1, coordinate time is approximately his
proper time. £= 0 yields (for ¥ = 7, 9 = 0):

om\ L2
P2 = B (1—Tm) = (7.38)
b o dr E
where 7= —  ——5—.
dt 11— 2

In eq. (7.38) this gives

dr)? om\ ~* om\ ' L2 1
Y (=) = (1) .
(dt) ( r ) ( r > E2 2 (7.39)

At rg, we have a radial minimum, % = 0. Such that

L\? TS
E) 1-2z
To
that leads us to

dr\” om\ > roN2 1 1
a) T s - =0. 4
(dt) < r) +(r> T Zm ] _m — 0 (7.40)

0 T




122

Section 7.5
We multiply it with (1 = sz ® and isolate dt. Integrating the result gives us the
time elapsed for a photon travelling from 7o to r (or the other way round),

"odr 1
t(r7 TO) = / 1 _ 2m
o

- (7.41)
()

0

We expand the integrated function, using the small quantity 277" (27m < 1, i—? < 1):

(R () (- e)
() 0-6) " (- )
~ <1 _ (%)Q)_W( om

mro
14 2y )
r r(r+mr)
We insert this approximation in (7.41), and obtain

t(r, ro) = /0 dr (1 - (%)3 o [ 2m

mro
142y T
r r(r+mro)
This integral has the solution

I

2 2.2
wﬁngﬁfg+mmnGi1L_ﬁ)+m(
To

r—To 1/2
r+rp '

For the trip from r; to 73 and back we obtain the delay of the time coordinate
At =2 {t(rl,ro) +t(rg, 1) — \/T% —ré— \/r% - r%}

(7"1 + /1% — r%) (7’2 + /72 — 7"8)
=4mln

2
o

+2m (\/Tl — 0 + \/T2 — ro) . (7.42)
r1+ 7o T9 + To
For large distances, ry, ro > ry, we have

At = 4m {ln (47“127’2) + 1] )
7o

(7.43)
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For the Earth-Mars distance we get
At pax = 72 [km] 2 240 [usec]. (7.44)

This delay was first measured with the missions of Viking and Mariner 6,7,9 for
Mars and Venus, with a precision of 3%.

The three classical tests of general relativity allowed the determination of the [
and 7 parameters at a precision of |y — 1| < 2-1072 (Shapiro time delay, ~1980).
|3 -1 <6-107* (Lunar Laser Ranging) |3 — 1| < 3- 1073 (perihelion advance of
Mercury, 1990).

A substantial improvement was made possible with the help of the satellite 'Cassini’
which was in conjunction with the Earth and the Sun in July 2002 during its
journey to Saturn [5]. These measurements give the limit |y — 1] < 2.3 x 107°.

7.6 The precession of a geodesic gyroscope

Let us consider a gyroscopic compass moving along a circular geodesic around a
spherically symmetric star (a Schwarzschild solution). In this case S is parallel
transported and we have

(S,uy=0, V,S=0, V,u=0. (7.45)

We consider a geodesic with ¥ = £ = constant and r = constant. Such that
u" =u’ =0 and u = u'd; + u?d,. Orthogonality of S and u implies

0 = e*u'S" — r’u?S”. (7.46)

[\

Normalization of u gives
1= e*(u')? —r?(u®)? (7.47)

Using the Christoffel symbols computed in egs. (7.2) to (7.6), the geodesic equation
for u gives

urout =4t = 0, =0
Ihgutu’ = —e*r(uf)’ +de*(u')* =0. (7.48)
Combining (7.47) and (7.48) we can determine u:
1 ra’
2a(, t)2 2/, o\2
) = 1—ra’ () = 1—ra (7.49)

Again using the Christoffel symbols computed in egs. (7.2) to (7.6), the geodesic
transport of S leads to
St = —Tt,5u*S? = —ad'u'S"
ST = —T75u®SP = — [d'e**ul St — re*au? S?) = re?*uS¥[1 — rad/]
§9 = I ues? = 0
S¥ = —T%,5u*S8 = —Lursr .

(7.50)
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We now choose the following orthonormal basis, normal to u = ey:
e = €%0,, ey =110y, e3=re U+ r_le“utaw :
In this orthonormal basis, (e, e,) = 1, we have S = S’e; with S* = (S, ¢;) we

obtain

S? = etr(u'S¥ —u?S"), S'=e0S", S*= rS? .
Equations (7.50) yield for the components S?, using (7.49) and (7.46)

/ t

: a o, u
St = re®ufS?[l —ar] = —e**—5°
rooou¥
5 =0
: a ,,ut
S? = e[l —dr]uufS" = ——e*—5!
rooou¥

s g5

P
a i u (W' =1)
Such that 15! 15? /
3 1 a 4,1
- _ _ _— _ = —e“t . .5l
” QS°, " Qs Q Te " (7.51)

Using u? = ¢, the angular frequency of the orbit is

dp ¢ w?
wi=—=I = —.
dt t ut
W2 = u? ’ (7.48) aleza i (62a>/
-\t o 9
With e2¢ =1 — 2Tm we obtain
s M
w® = = (7.52)

which is Kepler’s 3rd law.
For the rotation frequency 2 which describes the rotation given by eq. (7.51) we
have

1— 3 3
1-— - r
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3m

0 = *w? with e?=1-— "—. (7.53)
T
We can also write (7.51) in a vectorial notation
d = = - . —
—Z§=0nS with = (0,ew,0). (7.54)

In the Newtonian limit we have {2 = w, which means that in the Newtonian limit
the components of S do not change in a cartesian system and the precession with
w is caused by a variation in the basis e;, ey, e3 along the orbit.

In a gravitational field, m # 0, this variation in the basis is no more entirely
compensated and the spin precesses only with frequency

ew < w.
After one period, S has turned by an angle
21(l —e) = wg—.

The geodesic precession frequency is

wa :w(l—e):\/gll_ 1_3Tm]

N (GM>1/2§GM _ 3(GM)

2 r 2 32 (7.55)

r3
For the mass of the Earth this gives (for the precession of a satellite at a distance
r from the center of the Earth)

we = 8.4 (T@) arc-seconds per year (7.56)

The geodesic precession (the spin-orbit coupling) is added to the effect caused by
the rotation of Earth (Lense Thirring effect, spin-spin coupling) and is approxi-
mately 10% times stronger than the latter. Recently, the spin-orbit coupling has
measured with a precision of 0.27% for the orbit of the “Gravity Probe B” satellite
around the Earth. For the polar orbit of gravity probe B at an altitude of 642km, we
obtain wg = 6.6061 arc-sec per year. The measurement gave 6.6018 +-0.018 arc-sec
per year. To discern the spin-spin coupling, the data analysis had to be improved
in order to reduce the error of about a 10 factor as discussed in Sec. 5.5.3.

The Earth-Moon system can be seen as a natural gyroscope that undergoes this
precession on its orbit around the Sun (in the solar gravitaional field). The mean
distance of the Earth-Moon system from the Sun is about @ = 1.5 x 10%km. The
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gravitational potential is ¢ = GM/a ~ 9.87 x 1072, This gives a contribution of
(3/2)(GMy/a)??/a ~ 1.92 x 10~2arc-sec/yr when the Moon is at its perigee. This
contribution is measured in the ’lunar laser ranging’ experiments with a precision
of 0.1%, [4], so somewhat better than the spin-orbit coupling measurement of the
“Gravity Probe B”. The spin-orbit coupling is also observed in the binary pulsar
PSR1916+13 (see next chapter) where it is approximately 1.1°/year.

7.7 The Kruskal extension

As we have already mentioned, the Schwarzschild metric

2 dr?
g=- (1 = —m> At + g + 17 (0 + sin’ V)
r —_

T

seems to possess a singularity at » = 2m. However, all components of the Riemann
tensor remain finite at » = 2m. They typically are of the order

/ 1
Rl — Rl — —2b~7 — il 672b /
212 313 r 2 (\ />
1—2m
T
m
r3’

Thus, the relative acceleration of free falling particles remains finite at » = 2m.

Before searching for the coordinates in which we can extend the Schwarzschild
metric beyond r = 2m, let us discuss what happens when a particle comes from
far away towards r — 2m. We consider a radial geodesic, L = r?¢ = 0. With

(7.21) and (7.22) we have

2
f2=7m+E2—1. (7.57)

Let us consider a particle initially at rest at a distance »r = R > 2m from the
center. At r = R, we have 7 = 0: E> —1 = —27’”. This yields

—dr

r R
We have chosen the minus sign because we are considering a particle that is falling
towards r — 0, so r must decrease (it is 'ingoing’). Eq. (7.58) is the equation of a

cycloid. It can be sloved in the following parametric representation:

(7.59)
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For r = R we have (n = 0) 7 = 0. Nothing special happens at r = 2m. The center
r =0(n = m) is reached at the proper time value

- R 1/2 R 3/2 R
= - — ~ [ — — 10 ’sec.
T 2R<2m) (RS) (RS®> x 10 °sec

To compare, we consider r as a function of the time coordinate ¢ (the proper time
of an observer situated at r — 00).

dr. dr FE
(R N — 7.60
TTw T arr -z (7.60)
It is useful to introduce the variable
’
S g2 1(--1) 7.61
r*=r+42mln o (7.61)
dr* 1 dr dr*
e — = F—. 7.62
a - 1-zma T T (7.62)
From (7.62) it follows that
dre\ 2 2m  2m  2m
FP|—) =F>—1+4+—"— ="+ "1+, 7.63
( dt > * r r R ( )
When r — 2m, ™ — —oc and the right hand side of (7.63) approaches EZ.
For r = 2m we therefore have
LIPS 1, i =t t
>~ ie. r* = —t+ const.
dt ’
2m +2m1n (L — 1) = —t 4 const.
2m
For r — 2m, hence r(t) behaves like
2 2m + const - e~z (7.64)

The Schwarzschild radius r = 2m is reached at the time coordinate ¢ = oco. This
also follows from

t
T m where e diverges for r — 2m.
— T

Therefore, for a far away observer, the particle never disappears (¢ — 0o) behind
the horizon r = 2m.
Now let us consider light-like radial geodesics. For these, ds? = 0 which implies

that 4 5
oy (1 - —m> (7.65)
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O
O‘L“““““““

ct/m, ct/m

Figure 7.4: r(t) and r(7) for a radial geodesic.

For r > 2m the + sign is for rays with increasing radius, r — oo for t — oo
(“outgoing” rays), and the minus — sign is for “ingoing” rays.

For r — 2m the light cone becomes more and more narrow. (see figure 7.5)
Physically, it is important to note that the redshift of a photon emitted at r =
R>2misatr

. R)\'? — 2 1/27" m
Z+1g@<§$5> ::<1_£J . I (7.66)

T

This diverges for » — 2m. Hence, even though a massive particle (or a photon)
never reaches the horizon from the point of view of a far away observer, its light
becomes more and more redshifted such that it soon becomes invisible.

Let us introduce the so-called Eddington-Finkelstein coordinate,

w:t+r*:t+r+2mln<L—1> ,
2m

such that
dw = dt +dr +

d
_ W:ﬁ+1zm

2m r

Replacing ¢ with w, the metric becomes
2m 2 2 2 | a2 2
g=—(1——|dw” +2dwdr +r (d19 + sin” ddy ) .
r

Light-like radial geodesics are then given by

2m dw\ 2 dw
—(1 - — — 2— =0.
( r><d7‘> + dr 0
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Oblique
axes

v
r
— — Fr=1r;
ri=0 R | Outside
line of observer
falling
particle

Figure 7.5: “Ingoing” and “outgoing” geodesics in the Eddington Finkelstein co-
ordinate (vertical, called v) and r (oblique). From J. Foster, J.D Nightingale, A
short course in General Relativity, Springer, 1995

With solutions (31—1: = 0, describing geodesics with decreasing r (ingoing), and

((11_1: = 1_227”1 > (0 describing "outgoing’ geodesics.

The fact that there are events happening at finite proper time 7 which is later than
t = oo shows us that ¢ is not a good coordinate for r < 2m. For r > 2m, t is the
temporal coordinate relative to which the metric is static : K = 0, is the Killing
field that satisfies K” A dK” = 0. This uniquely determines ¢ (up to a constant).
For r < 2m, the r coordinate becomes timelike.

We wish to extend the metric beyond r = 2m. For this, we follow Kruskal’s
approach (1956) by trying the ansatz u(r,t), v(r,t) such as

g = *(u,v)(—dv® + du®) + r? (d9? + sin® 9de?) . (7.67)
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For such a coordinate system, we have (3—2)2 = 1 for radial light rays, like in

Minkowski spacetime. The radial part of the metric, ¥ = const, ¢ = const, is
conformal to the 2 dimensional Minkowski metric and thus has the same light
cones. In this kind of coordinate system we no longer encounter the problem of
the light cones which become more and more narrow.

The relation
o da'tdx’v
b = e g v

leads to the following differential equations for the transformation (¢,7) — (v, u):

)@@ o
_ﬁ _ [(%)2 - (%)2] , (7.69)

oudu Ovov

“otor  otor
Motivated by the staticity of the Schwarzschild solution, we try to find a function
f that does not depend on t. We first set

(7.70)

F(r*) = —— (7.71)

where r* =7+ 2mIn (5= — 1) as before in eq. (7.60). With (7.68) and (7.69) this

2m
yields
o\’ u\’ .
(at> _(8t> —re s

o\’ ou\> .
(Y (2 = e, -
ou Ou B Oov Ov

Ot Orc Ot Or* (7.74)
We used the fact that
dr* B 1
dr 11— 277” '
The sums (7.72)+(7.73)F2-(7.74) yield
o o)\’ ou  ou\?
<§ * 8r*> B <§ * 87"*) ’ (7.75)

o v\’ ou  ou\?
(E a 81“*) B (E a 87’*) ‘ (7.76)
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The signs of %, %, etc. are not determined by (7.68) to (7.70).

When taking the square roots of (7.75) and (7.76) we choose the positive sign in
(7.75) and and the negative sign in (7.76).

If we chose the same sign in (7.75) as in (7.76), the determinant ‘g((:ﬂ)) would
vanish.
With this we find (1/(7.75) + 1/(7.76); \/(7.75) — \/(7.76))
Jdv  Ou v Ou
ot o 7 o ot (.77)
This gives
Pu  Pu v
otz or*?2  0t2  Or*? (7.78)
With the general solutions
v="h(r*+1t)+g(r*—1),
u=nh(r*+t)—g(r*—1t). (7.79)
The equations (7.72) and (7.73) demand that
—4n (r* +t)g' (r* —t) = F(r*) . (7.80)
Taking the derivative with respect to r* yields
h//(T.* + t) g//(T* _ t) B F/(T*)
Wi+t g —t)  F(r)
and taking the derivative with respect to ¢ leads to
h/l(,r,* +t> B g/l<,r,* _ t) B O
R(r*+t)  gr*—t)
The sum of these two equations implies
I E(r*)]) =2[0n k' (r* +1)] . (7.81)

Here we consider v* and y = r* + t as independent variables. The two sides of
(7.81) therefore have to be constant. It follows that (with the choice of 27 for
[In(F(r*))" and the choice of the integration constant in such a way that the (7.80)
constraint is satisfied),

* 1 * 1 N
F(r*) — 77262777’ , h(r* + t) — 5677(1" +t) ’ g(r* _ t) _ _§en(r —t)

For r > 2m the sign of h and ¢ is determined by the condition F' > 0. We finally
obtain

u =h— g= %QW(T*H) + %en(r*t)

x r 2mn
=€ coshnt = (— — 1) e coshnt .
2m
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And similarly,

r 2mn .
V= (— — 1) e sinh nt.
2m

For f we find
2m [ r 1—4mn
2 —2nr
2= (— — 1) nr
n’r <2m c

We want to choose the integration constant n such that f2 # 0 at » = 2m. This
requires 17 = . This choice defines the Kruskal transformation (r,t) — (u, v)

u = (% — 1) v exp(r/4m) cosh (ﬁ) (7.82)
v = (# - 1) 2 exp(r/4m) sinh (ﬁ) (7.83)
f?= 32:13 exp(—r/2m). (7.84)

For r > 2m, This is simply a coordinate transformation. The domain (r > 2m,t)
is mapped on the region u > |v| of the plane (u,v).

Figure 7.6: The domain (r > 2m,t) is the domain u > |v|.

We have

r t
ur—? = <L—1) ezn  and E:tanh — ] .
2m U 4dm

The curves r =constant are then hyperbolas, u? — v? = const. For r — 2m, they

approach the lines u = |v|. The lines ¢ = const are radial lines. The diagonal
u = v corresponds to t = oo and u = —v to t = —oo. The diagonals t = 00 also
correspond to r = 2m.
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t=oo, = const

t = const

t:—oo,

r=2m

Figure 7.7: Lines with r =const. and ¢ =const. in the plane (u,v).

The metric
g = (u,v) (—dv? + du?) + r*(u,v) (dV” + sin® ¥dp?) (7.85)

is well defined not only for u > |v|, but everywhere where f(u,v) = f(r(u,v)) is
well defined and r(u,v) > 0. The function r(u? — v?) given by

u? —0? = (L - 1> e | (7.86)
is monotonous (see graphic 7.8). The domain r > 0 is given by

w— > -1, v —ut<1. (7.87)

The new Kruskal manifold (u,v) contains the Schwarzschild manifold (r,t) for
r > 2m. On the Kruskal manifold we also have G, = 0. Therefore it is also a
solution of Einstein’s field equations in vacuum.

When we derived the Kruskal transformation, we arbitrarily chose the sign of
h, h > 0. The choice h < 0 would also have been possible. It corresponds to
(u,v) — (—u,v). This transformation maps the domains I and III on figure 7.9
isometrically.

Consider the Schwarzschild solution for » < 2m. It satisfies the vacuum equations,
G, = 0. For r < 2m, r is a time coordinate. The domain r < 2m of the
Schwarzschild solution is isometric to the domain II in the Kruskal manifold. To
see this, one can repeat the derivation that led us to (7.82) and to (7.83) with
r < 2m. Now F(r*) is negative and the relative sign of h and g must be positive.

We obtain
U= (1 — %)1/2 exp (ﬁ) sinh <ﬁ) , (7.88)
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r/2m
f
I
|

05F

L | L L | L M L
0 5 10
u-v u2-v2

Figure 7.8: The functions r(u?* — v?) and f(r(u® — v?)).

r=0

v V=
r= 2\
t=oo
Il |
r= Zm/\o
Voot

Figure 7.9: The 4 domains in the Kruskal manifold separated by straight lines at
45°.

u

v = (1 — %)1/2 exp (ﬁ) cosh (ﬁ) , (7.89)

and f is (7.84) like before.

We now have v? — u? = (1 — ;%) e2n > 0 and * = tanh (;%), which corresponds
to the domain II. On v?> — u? = 1, r = 0, the geometry has a true singularity.
For example, the Riemann scalar R diverges. The Kruskal manifold is maximal.
Every geodesic encounters the singularity v? — u? = 1, or its affine parameter goes

to infinity.
The causal relations of the Kruskal metric are simple, because light cones are at

45° as in Minkowski space:

e The observers I and III can receive signals from IV. (I and III are themselves
causally disconnected)
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e Part I and III are equivalent to the Schwarzschild manifold at r > 2m. Part
IIT is obtained from I by the transformation © — —wu which corresponds to a
change in the sign of the square roots of eqs. (7.75) and (7.76)

e No signal can stay in IV.
e No signal can leave II.

e Each time-like or light-like geodesic in II meets the singularity u? — v? = —1
within finite proper time.

e Each time-like or light-like geodesic in IV has left the singularity a finite
proper time in the past. The singularity v? — u? = 1 is separated from the
asymptotically flat regions, I and III, by the horizon r = 2m. !

e A signal that comes from IV towards I (or I1T) has left the singularity before
t = —oo. The domains IV of the Kruskal manifold corresponds to t < —oo
and is (perhaps) not observable. In general an astrophysical black hole is
represented by the domains I and II of the Kruskal manifold (the part IV is
sometimes called ”white hole”).

e The singularity at v? — u? = 1, r = 0 is space-like. In I and III the Killing
field K = 0, is time-like, while in IT and IV it is space-like and at the horizon,
r = 2m, it is light-like:

om <0 ifr>2m
(K,K)z—(l——) =¢ =0 ifr=2m (7.90)
" >0 ifr<2m.

e In II (IV) no observer is at rest, that is with » = constant. Every observer
either approaches or recedes from the singularity.

Generalised Birkhoff’s theorem: Any solution of the vacuum Einstein field
equations that has a spherical symmetry is a part of the Kruskal manifold.
Proof: See, for example, Straumann [16].

Much more difficult to prove but also true is that every static vacuum solution
is a part of the Kruskal manifold (i.e. static vacuum solutions are necessarily
spherically symmetric, this is Israel’s theorem, see also [16] for a proof).

LA horizon is a light-like closed surface with the property that every light cone with vertex
on the surface is partially tangent to the horizon surface, and the non-tangent part only opens
into the interior of the horizon.
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7.8 The spherical collapse to a black hole

As soon as a star’s radius is less than 2m there exists no static solution. Because
the world lines of the surface of the star are inside the light cone, its surface will
inevitably precipitate towards r = 0 (quantum effects at r ~ 07).

A signal passing to the inside of 7 = 2m cannot ” come back out” (see figure 7.9 and
remember that light cones are at 45°). All the light rays also fall into the singularity.
The horizon r = 2m is the limit of the domain that is causally connected to infinity,
r — o0. It acts like a semipermeable membrane: energy and information can enter
but nothing can come out.

The existence of horizons in the universe is a remarkable consequence of general
relativity without any Newtonian analog. The singularity of the Schwarzschild
solution is behind a horizon and thus invisible. There is a conjecture that this is
so for every stable solution possessing a singularity:

’The cosmic censorship conjecture’: Every singularity of a stable solution of
Einstein’s field equations is separated from an asymptotic observer by a horizon.

There does not yet exist a counter-example (what we would call a naked singu-
larity) that is stable if the energy-momentum tensor satisfies some 'reasonable’
conditions.

7.8.1 The redshift of an asymptotic observer

We consider an emitter that radially approaches the Schwarzschild horizon with
four-velocity v and emits signals with frequency w..
If k is the wave vector of the emitted photons, we have (special relativity):

we = —(k,v) we _ (k)

wo = —(k.u), the redshift is z+1= o ) (7.91)

We set a =t — 7%, 7* =r+2mln (55 — 1) (a is the “retarded” time). With this

r

2
g=—- (1 — _m) (da)? — 2dadr + r*dQ>. (7.92)

For a radial ray of light we have
1

_ 2m
T

k= k"0, + k"0, = k'O, + {1 1 } k"0, .

With (7.92) the lagrangian of a radial geodesic is
1 2m

—L= l— (1 — —) k* + kﬂ"} k*=0. (7.93)

2 T



Ruth Durrer General Relativity Chap. 7 137

2m

Figure 7.10: An emitter ‘€’ with four-velocity v approaches the horizon, r = 2m,
of a black hole . It emits photons with four-momentum k towards an observer ‘0,
who is at rest (four-vector u).

£= 0 implies k, = 0 or % (1 — 27’”) k*+ k"™ = 0. For an outgoing radial light ray we

have .
ka:kt—kr (1—2m> :0

r

As e = (1 — 22)k" is a constant of motion, it follows that k" =constant, such that
k = const - 0, and

(v,0r)
1 = . 7.94
For v = v,0, + v,.0, we have (v, 0,) = gaVy = —v,. For a far away observer at rest
we have (u,0,) = gorUq = Jarty = —1. So that
1
1+z:Ua:Ut_1_—2_mvr‘ (795)

T

With £ =v, (1 —22),2c=1= (E* —v?) (1 - 27’”)71 we obtain

r T

E —w, om\ !
14+2= —(1-2=
+ z [ 2m ( r)

2 2m 12 r—2m
B+ (E2-14+25 =2 o0 (7.96)

r

The proper time of the observer is d7, = da.
The coordinate of the emitter r.(7,) behaves like

dr.  dre (7”) vy v, (1 Qm) (E? —1+ i—’:)l/?

dTO_dCL - - T_e E’+<E’2_1+2r_m)1/2'

a

7.97
Vg 1+ 2 ( )
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Very close to r, ~ 2m we obtain

dre 1 2m d L1

3 =3 <1 - > or — dTO(Te —2m) = R(TE —2m) (7.98)

with solution
re —2m = e dm | (7.99)

This implies

4 E To
142 2 e (7.100)
re — 2mM

Eq. (7.99) shows that the transmitter reaches r, = 2m only for 7, — oo, where 7,
is the proper time of the observer. But according to (7.100) the redshift diverges
for r — 2m.

The caracteristic time is 4m = 10~°[sec] ( M

Mo
pears” quickly when it approaches the Schwarzschild radius, because of the redshift
that shifts the signal’s frequency out of the telescope’s sensitivity range.

). Therefore the transmitter “disap-

7.8.2 Falling into a black hole

The typical components of the Riemann tensor of the Schwarzschild solution are

m 2m

Rowor = — . (7.101)

Rig1g = —,

1212 = 3 3
The relative acceleration of freely falling particles is ~ 275 (in the radial direction).
Let’s consider a small cube with dimensions ¢ < m and mass p. The difference of
the gravitational force et the two ends of the cube is

2m
Yielding a tension T = KEQ = i—?% The question is at which radius r this tension

will tear apart the object. For p ~ 60 [kg], ¢ ~ 170 [cm| we find

T(r) ~ 10" (%) [dyne cm™?] . (7.102)

(compare to 1 [atm] ~ 10° [dyne cm™?]),

T(Rs) = 10" <%ﬂj®)> [dyne cm™?]

For large masses, Rgs > Rg(My), the tension can be bearable at r = Rg. But
then, the approach r» — 0, T — oo is inescapable ...
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7.8.3 Observational evidence

It has been proven that there is no stable configuration of matter when M 2
2.5M. Any star that is unable to get rid of its excess mass will eventually form a
black hole. Because a black hole is not directly visible (no photon can escape from
the inside of the horizon), we can only observe it using its gravitational effects.
Very often a black hole is surrounded by a disc of ‘dust’, the accretion disc that
emits X-rays, or it is in a binary system. In these cases, we have means to estimate
its mass and/or its ‘size’ (the size of its horizon, Rg):

e We have found several binary systems where one of the bodies has a mass
superior than 5 My, 7 My and even 10 M, and is not visible in the optical
spectrum, and so is probably a black hole. Despite this, the abundance of
stellar black holes in our galaxy is very difficult to estimate.

e The coalescing black hole binary from which the first gravitational waves have
been detected by the LIGO experiment [10] consisted of two original black
holes of masses M ~ 30M, forming a final black hole with mass M ~ 60M,.

e It is also very likely that massive black holes, M ~ 10°~7 M, are found at
the center of most galaxies. At the center of the Milky Way there is most
probably a massive black hole with a mass M ~ 3.6 x 10 M. This mass has
been measured by observing the very small stellar orbits near the galactic
center.

e The activity of quasars and the nuclei of active galaxies is understood as an
accretion around a supermassive black hole, M > 108 M, at the center of
those galaxies.

7.9 The Carter-Penrose diagram for the Kruksal
spacetime

In this section we will construct the ’conformal compactification’ of Kruksal space-
time. Such constructions enable a discussion of what happens at infinity using
the local tools of differential geometry. This is most important for example when
studying gravitational radiation.
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7.9.1 Conformal compactification of Minkowski spacetime

As a simple example, we construct the ‘conformal compactification’ of Minkowski
spacetime. In polar coordinates, the Minkowski metric is given by

ds® = —dt* + dr* + r*(d¥* + sin® 9dp?) .
By introducing the coordinates u =t —r and v =t + r we can write
1
ds* = —dudv + Z(U — u)?(d¥? + sin? ¥dy?) .
The hypersurfaces {u =constant } and {v =constant } are zero-surfaces, that is
g 9\ o 0\ 0
MNowou)  \ovaw)~

These are the surfaces normal to light rays propagating in radial direction towards
r — oo for u =constant or towards r — 0 for v =constant. The coordinates (u,v)

of the region u < v of R? represent all the domain (¢,7) with » > 0. We map them
to the bounded domain (U,V) € [-%,2] x [=5,Z] with U <V given by

T 202
u=tanU , v=tanV . (7.103)
With JUdv
dudy = ———-——
uav cos? U cos? V
and 2( )
e sinf(U -V
(u—v)"= cos?2U cos?2V '’
the metric becomes
1
2 .92 2, 2 2
ds® = Too U ooV (—4dUdV + sin*(U — V)(d9* + sin® 9dp?))
1 2
pr— < 1 h
4 cos? U cos? Vds ;b
d§® = —4dUdV +sin*(U — V)(d¥* + sin® 9dy?) .

The metrics ds? and d3? are related by the conformal factor’ Q2,
ds? = 0?ds*, P =4cos’Ucos’V .

Unlike ds?, the metric d3? is also defined at the boundary, U = +7/2 or V = +7/2.
It is a regular metric on M = [—7/2,7/2] x [-7/2,7/2] x S%. Indeed (M, d5?) is
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a part of the Einstein universe given by R x S?* with its metric induced by the one
of R®. By setting 7 = U +V and x = V — U we obtain, x € [0, 7]

3% = —dr* + dx? + sin? y(d0? + sin? 9dp?)

which is the metric of R x S*. The part y > 0 of the shaded area of the cylinder
R x S? on figure 7.11 corresponds to M. The image of Minkowski space is the
inside of M (M without the boundary) . The border is called the ‘conformal
infinity’. It consists of the following parts: the two zero-hypersurfaces given by
{2V =74+ x = m,2U| = |7 — x| < 7} = J* corresponding to 'future null
infinity’ and {2U =7 — x = —7,|2V| = |7+ x| < 7} = J~ corresponding to
'past null infinity’. The two points i* = (U,V) = +(r/2,7/2) indicated on
the graph corresponding to time-like future infinity (i*) and past infinity (i~) and
i = (U, V) = (—n/2,7/2) represents the space-like infinity.

x=[-m,m]

Figure 7.11: The Einstein univers with the manifold M (shaded area) which is

conformally isometric to a Minkowski space. The boundaries of M correspond to
infinity in Minkowski space.
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Any time-like geodesic that is directed towards the future ends at ¢t and any
time-like geodesic that is directed towards the past ends at i~. Any space-like
geodesic ends at i°. The conformal diagram with coordinates (7, y) is presented in
figure 7.12. This figure is the Penrose-Carter diagram of Minkowski space.

Figure 7.12: The conformal diagram of Minkowski space. The inside corresponds
to points at finite (¢,7) whereas the boundary represents points at infinity, as
described in the text. The angular coordinates (1, ) are suppressed.

7.9.2 The Carter-Penrose diagram for the Schwarzschild-
Kruskal spacetime

We proceed in the same way to construct the Carter-Penrose diagram of Schwarzschild-
Kruskal spacetime. We transform the Kruskal coordinates, (u,v), given in (7.82)
and (7.83) to

tu=v—u and V=v+u.

As in the case of the Minkowski spacetime, we perform the transformation (7.103),

with (U, V) € |—7n/2,7/2[ x| —7/2,7/2[.

(1_L>6XP<L>:U2—U2II~L’(~J {>0 for r < 2m

tanU and o=tanV ,

2m 2m <0 for r>2m.
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Figure 7.13: The conformal Carter-Penrose diagram of Kruskal spacetime in the
plane (7,x). The inside corresponds to points at finite values of (u,v) whereas
the border represents points at infinity, as described in the text. The four regions
I, II, III and IV are also indicated. The horizon r = 2m corresponds to the
diagonals V' = 0 and U = 0. As in the case of Minkowski, the light-like infinities,
J* correspond to U and V = +m/2 respectively, i* is space-like infinity and i*
represent the time-like future and past infinity respectively.

As uv = tanU tan V', the sign of UV is positive inside the horizon, r < 2m and
negative outside, r > 2m. At the singularity, » = 0, we have 40 = tanU tan V' = 1.

As for Minkowski, we set 7 = U4V and y = V —U. The entire Kruskal spacetime
in the plane (7,y) is shown on the diagram 7.13. The horizon is represented by
the lines V' = 0 and U = 0. Inside the horizon (regions II and IV) U and V
have the same sign. Outside the horizon they have opposite signs. The singularity
is given by the lines 7 = U + V = +£7/2. The boundaries (light like infinity
are at U = £7/2 and V = £r/2. The intersection points of light like infinities
correspond to spacelike infinity. Timelike infinity is at the intersection of light like
infinity with the singularity r = 0.

In this Carter-Penrose diagram, the hyperboloids

=02 —u?= <1—L) er/2m
2m
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which correspond to the singularity r = 0 are transformed in tanU - tanV =
@ -0 = 1, which gives cos(U +V) = (1 —tanU - tan V') cos U - cos V' = 0, such that
7 =U+V = 4+7/2. Hence the two dashed lines represent the singularity. As for
the Minkowski case, for a certain conformal factor 2, the metric § = Q?g can be
extended differentiably to J* (but at i° only continuously).

Exercise: Show that in the region r > 2m we have

2(%—1)1/267/4m005h(t/4m) . r r/9m,
arctg ( 2 i gy P if (=—1)e/?m <1
1/2

X = 2( 51 er/4™m cosh(t/4m) . r r/9m (7104)

7 — arctg ( (2 (2)571—1)@7"/%—1 ) if (= —1)e/?m>1

/2 if (&—1)e?m=1,

1/2 .
2(=—1 e’/*™ sinh(t/4m
T = arctg Erill) (t/4m) : (7.105)
G

Some of the curves t = constant and r = constant in region I (r > 2m) are shown
in fig. 7.14. Draw an analogous figure for region II, 0 < r < 2m. For this, first
derive the formulas corresponding to (7.104) and (7.105) in this region.
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Figure 7.14: Region I of the Carter-Penrose diagram in the plane (7,x) is
represented. Lines ¢ =constant (red, solid), and r =constant (blue dashed)
are indicated. All ¢ =constant lines start in (7,x) = (0,0) corresponding to
r = 2m and end in i, iie. 7 = oo From top to bottom the times t =
4mlIn(4), 4mn(2), — 4mln(2), — 4mln(5) are chosen. The lines r =constant
start in ¢~ and end in ¢*. From left to right the values of r are such that

(r/2m — 1)exp(r/2m) = 0.1, 0.7, 1.1, 2.5.
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Chapter 8

Weak gravitational fields,
gravitational waves, gravitational
lenses

We consider Lorentzian manifolds (M, g) with weak gravitational fields. In this
case there exist coordinates where

G = Ny + My, with  |hy| ~e < 1. (8.1)

o AP < 20Mo o g o 16,

For instance, in the solar system |h,, | TS ol =

8.1 Linearized gravitation

We expand the Ricci curvature and we only keep the terms that are of the first
order in hy,, O(hu, = 0(¢).
According to (3.30),

Rl“/ = F;D,Lll/ a Fgu,u + O(€2> (82>
]' (0%
D =3m (M + v o — hyw 5) + O(€%)
1 (0% « (0%
:i(hu7u+hl,7ﬂ—hu’y) . (8.3)

Here we "raise” and "lower” the indices of h,, with the Minkowski metric 7),,.
This gives

1 e’ e’ a
RHV = 5 [h,u,ua + h vopo Dh#” - ha,,uzz] (84)
and
R=h"_,—0Oh where h:=h", . (8.5)

147



148 Section 8.1

The linearized Einstein tensor is
2y = =Bl = g + B 1, o+ 1 (B =1 ) (86)

The Bianchi identity to 1st order, G*, = 0, are identically satisfied by (8.6).
Inserting the Einstein tensor (8.6), Einstein’s field equations give

Ol = B+ % 4 By %+ (Oh = 1,5 ) = 167G T, . (87)

poov

In the linearized theory 7" = 0, that is T),, creates a gravitational field but this
field does not affect T}, to first order.
We work also with

1
Vo 1= Py — 577/wha (8.8)
1
hyw = Y — inw,% where v = 4%, (8.9)

Using 7,,, Einstein’s field equations become
_Dry/ﬂ/ - T],LLVrYOéﬁ,aﬁ + ’7“0;& v + ,Yuoza n - 167TGT;LV . (8]—0)

Let &* be a vector field. A simple but somewhat lengthy calculation shows that
the Einstein tensor (8.6) is invariant under the transformation

Py ¥ Dy + €864 0 + €60 - (8.11)

Eq. (8.11) can be interpreted as an infinitesimal coordinate transformation:

let us set ' = a# + e£#(x). This transformation induces changes of the order e
in every quantity. In the curvature (and the energy-momentum tensor), which is
already of first order in €, we can neglect this change. But for the change in the
metric we obtain

or'*ox'P ,
9) = g g 90"

= (0% +e6%,) (67, +e€”,) gop + O(e?)
= G (@) + 20 (2)€%, + 29,567, + O().

To first order,
h#,/(l') = h;u/(x) + gé,u N + 561/ e (812)

On the other hand, an infinitesimal diffeomorphism is the infinitesimal flow ®, of
some vector field £. The change in the metric under ®. is the pull-back,

g =0g=g+eleg+0(?).
For g =n+ h, O(h) ~ O(¢), this yields

h i h+eLen+ 0(e?) (8.13)
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but (Len)w = &4 v+ & 4 Under linearized coordinate transformations, also called
‘gauge transformations’ in this context, the curvature and energy-momentum ten-
sors are invariant whereas the metric transforms according to Eq. (8.12). We can
use gauge invariance in order to simplify the Einstein field equations (8.10).

Lemma 8.1 We can always find a gauge such that
., =0. (8.14)

This gauge s called Hilbert gauge.

Proof: Under a gauge transformation hy, — hy,, + &, + &, , (we absorb the
factor € in ), 7y, transforms according to

P)/,uu — ’Y;w + gu,l/ + 51/ N7 Uuufa,a = 7;/11/ (815)
and so
P, T = (5.16)
For
Ogk = —1, (8.17)
this yields '#, = 0.
But (8.17) always has a solution (retarded Green’s function). O

In the class of the Hilbert gauges (8.14) Einstein’s field equations simply become
09 = —167GT),,. (8.18)

The general solution of (8.18) that satisfies the condition (8.14) is
Y = —16mnGDg x T}, + homogeneous solution (8.19)

where Dp is retarded Green’s function of the d’Alembert operator (see Compl.

Math. 1)
~1

47 |Z|
(where (DgxT""), = DpxT" ,=0.)
We then obtain

Dg(T) = ot —[Z])O(t).

T (t— |7 — 7|,

Y (T, 1) = 4G/ T

r—x

d®2’ + hom. solution. (8.20)

We can interpret this field as the field generated by the source 7. As in elec-
trodynamics, the reaction of the metric to the source is causal; i.e., v,,(Z,t) only
depends on the values of the source on the background light cone of (¢, ).

The homogeneous solution represents a wave coming from infinity (e.g. a plane
wave).
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8.2 Quasi-newtonian sources

Let us consider an energy-momentum tensors with |Tyo| > |Ty,|, |73;] and with
small velocities such that we can neglect retardation effects inside the source, i.e.
Too(t — |& — &'|) = Too(t) in the source, |v] < 1.

We then have

1 1
hoo + §h =00 = —4P,  Yo; =i = hij — §5ijh =0, (8.21)

where ® is the Newton potential,

—G/ G/TOO (E2) g3, (8.22)
|7 — ﬁ’| |7 — 2|

with v = +4® and (8.9), it follows that

goo=—(1+2®), go; =0, gi=(1-29P)d;,

that is,
g=—(1+2®)dt* + (1 — 20)dz* . (8.23)

Far away from the source (or in a spherically symmetric system) we can restrict
our consideration to the monopole contribution,

om 2
g= (1 - —) d? + (1 + —m> dz?, (8.24)
T T

With m = GC—QM, which is the linearization of the Schwarzschild metric.

The approximations in (8.23) are

e The terms of order ®? and higher are neglected.

e The terms ~y; are of the order v® where v ~ ,ﬁ’o is the typical velocity of
the source.
e We neglect the v;; ~ ® x % ~ P2,

In the Newtonian approximation, v? ~ ® and the most important corrections are
then of the order ®*/2. In the solar system, ® ~ 1079, every corrections are < 1077.



Ruth Durrer General Relativity Chap. 8 151

8.3 Free gravitational waves in the linearized the-
ory

8.3.1 The TT gauge

We first consider the linearized equations in the vacuum:

Oy = 0. (8.25)

Lemma 8.2 IfT,, =0, there exists a gauge with v = 0 in the class of the Hilbert
gauges.

Proof: The gauge transformations
Vv = Vo + o + & = M 0 = Y
in the Hilbert class satisfy
MW, =9",=0 & D¢=0.

We have 7' = v — 262 ,. We search for a field §# with O&* = 0 and £* , = %fy.

Construction: Let n* be a solution of n* , = %7. Let ¢* = On*. Because
bo—gpr = tp. 62
C,p,_ n,u_§ 7_07

there exists an antisymmetric tensor f#** with

=g,
Let o* = —g"" be a solution of Oc*” = f*. We set

é‘# = 77“ - O-lw,u'

This satisfies " , =n" , = %fy and
Ogr = g — O, = (4 — f*, = 0. 0

In this class of gauges we have 7v,, = h,.
The general solution of (8.25) is a superposition of plane waves

hw = Re (£,e7%%)  with k> =0 where k= (w,k) et k*=w?—Fk
(8.26)
The gauge conditions require

V=, =0, h=~=0.

v
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So that
ket , =0
et =0 (8.27)

The matrix ¢, is called the polarisation tensor. The five conditions (8.27) leave
free 5 components of the symmetric matrix €,,. We now show that only two
degrees of freedom are physically relevant, the other three can be eliminated by
additional gauge transformations inside the class of gauges (8.27).

A gauge transformation that is accepted in this class of gauges must satisfy

0§* =0 and ¢&*  =0. (8.28)

We set ‘
&" = Re (ig"e” ™) (8.29)

(8.28) implies that k* = 0 and k,e* = 0.
Under a gauge transformation ¢, transforms according to

Euw > € + ke, + ke, (8.30)

Let us consider a wave propagating in the z direction:

(k") = (k,0,0,k).
In this case (8.27) yields

€ov = €3y, €00 = €30 = €33, €01 = €31, €02 = €32
and —egg+ €11+ +6e33=0=611 +95=0
Every components are then determined by
€00, €11, €01, €02 €12-

Under a gauge transformation of the form (8.30) these components change into

€00 > €00 + 2keg

€11 F> €11, €127 €12
€01 —> €01 + ke1, €02 > €02 + keo

k,e# = 0 implies that gy = €3.

] — €00 — €01 — €02
By choosing g9 = —5, €1 = —* et g3 = —52 we can cancel gg, and the only
remaining COIIlpODthS are €12 = €91 and €11 =— —&929.

This gauge is the TT gauge (transverse, traceless). In this gauge

ho=0, h';,=0 and hy;=0. (8.31)
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These gauge conditions can by satisfied for any gravitational wave (the conditions
are linear).

To determine the effect of a gravitational wave on the distance between two free
falling particles, we must calculate the linearized Riemann tensor. Equation (3.29)
gives

R, =Th ,—Th,  +terms of (I'§,)* .

So that

1
5 (hw up T h/w oV T hul/ op hpo 7#1/) : (8'32)

In particular for the components

Rinjo = Roioj = Rojoi = —Riooj = —Roijo

Ryovp =

we get, in the T'T gauge,
1

Rijo = 5

(hOj 0i + hoi 0 — hij o0 — hoo zj)
1
= _§h1] ,00 - (833)

As Riojo is a gauge invariant, (8.33) implies that it is impossible to reduce h,,
further than the two degrees of freedom of the TT gauge.

8.3.2 Geodesic deviation generated by a linearized gravi-
tational wave

The separation vector 77 between two neighboring geodesics satisfies (see equation

(6.4))

d*i . .
i Kii, avec Kjj = R' ;. (8.34)
To first order this gives, in the TT coordinate system
d?n’ Lo,
where * = 0;. We consider two timelike geodesics with vanishing velocity in the

absence of a gravitational wave. In the absence of a gravitational wave therefore

7 is constant.To first order in h;;, we obtain

. ) 1 .
In particular, let us consider a plane wave in z direction.

hyyw = —hy, = A(t — 2)

hay = hye — Bt — 2) (8:37)



154 Section &.3

are the non vanishing components in TT gauge.
If the separation vector 7 is parallel to the wave’s direction of propagation, n(0) =
(0,0, a), it is not affected, h;jn/(0) = 0. Only the transverse separations oscillate.
The transverse part of n, n, = (n,,n,) satisfies

n, =Kin;

1/ h h
K, = [ o= Do)
179 ( hay —has >

~ 1 hzx hxy

with
We then have

Let R be the rotation of the plane (z,y) that diagonalizes the symmetric matrix

KJJ
1/ hpw hay \ QO 0 -
§(hzy —hm)_R(O —Q)R ’

and let (n,£) the components of n, in the rotated system,

et () mo=n(g)

In a small time interval, the evolution of n  is then given by

n =mno+ Qt)no
£ =& — Q) .

Hence Eq. (8.38) corresponds to a shear. To first order, a circle is transformed
into an ellipse with the same area. Fig. 8.1 shows the distortion of a circle of test
particles. The distortion is generated by a periodic wave with period w :

hue = Re (Age™(172))
h.y = Re (Boe*"‘”(tfz)) .

8.3.3 The energy radiated by a gravitational wave

Within the framework of special relativity, the energy-momentum tensor is con-
served,

™ = 0. (8.39)

tot 4
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AC:O Bo:O

Figure 8.1: The distortion caused by a purely diagonal gravitational wave (on the
right) and a purely “off diagonal” one (on the left).

Here TH" can, for instance, represent the sum of the energy-momentum of particles

and electromagnetic waves. By integrating the 0 component of (8.39) on a fixed
3-volume V' with surface 3 we find

oz/7§ﬁ%+/ﬁgﬂ%
v o v o

After using the Gauss theorem, this yields

dE(V) d 043 i
— = —— d’z = [ Tyn'd A4
; : [yd°x /2 on'do , (8.40)

where 77 is the normal to the surface ¥. The second term is the energy flow through
the surface ¥ (towards the outside).

In general relativity, we also want to find symmetric quantities
T = g (T* 4 t") (8.41)

that are conserved, that is, with 7, = 0. Here, g = |det(g,,)|"/?, and T is
the energy-momentum tensor of matter. The quantities t** = t"# are the spe-
cific contributions of the gravitational field. Because the equation 7, = 0 is
not covariant, t** cannot be a tensor. The quantity ¢ is called the energy-
momentum pseudo-tensor of the gravitational field. There are several versions
(Landau-Lifschitz pseudo-tensor, Einstein pseudo-tensor) that lead to the same
conserved quantities in the linearized theory. Here we only consider the linearized
theory. As before, we set

Guv = N + h,uu . (842)

We separate the linearized part of the Einstein tensor from the rest,

G =GY +G%

nv puv o

(8.43)



156 Section 8.4

where GO contains the terms linear in hy, and G contains the rest. With

g =+/—det(gu) =1+ g ~ 1+ 1h the field equations yield
G =8rGyT,, — gG) — 69G') + O(h?) . (8.44)

As GW is conserved, cW ", = 0, we obtain up to terms of order h® which we shall
neglect in what follows,

vV

1
(gT,W - Lew+ 590,93)) 0. (8.45)

We define

T = 9T — (g G(z) + 5gGE}V)) =g (T +tw) . (8.46)

e
The quantity 7, is symmetric and possesses the required properties to be consid-
ered as the energy-momentum pseudo-tensor, 7, = 0.

Using Hilbert gauge we find after a little calculation (to the order of h?),

14 1 roa (0% 14 14 (07 o 14 1 14
gtl’“ f— _327TG {2’)/#& 757 76 _ 2,y/'ta ’ﬁ/y ﬂu _ 27 Q’B’Y B7N + /yaﬁnu’,y B: _ 577#77
1 uv af o 1 «@ Bo
=5 | 108,077 = 57 0 = 2Ya8.07 (8.47)
Taking the divergence of this expression we obtain
1
(9t) = g (hw By = 20, By o+ By By™) (8.48)

Similarly, by using g5 = 29155 and the Einstein field equations, we find (still to
the second order in h)

0= VT =T, + T2, T + T, T

0= QVBTO‘B = (gTaﬁ) 5+ FgﬂG(l)oﬁ _ FfﬁG(l) aa)

81G(

0=(97°") 5+ zo— (hs0y*? — 20°, ;077 + b T047F)

321G
which proves that Ta’B 5 1s zero, given the already established identity (8.48).
For a plane wave in x! direction, in TT gauge, equation (8.47) yields

hw = h(t =), A% =4"=0, y=0 4,=0

0 =t | () § (b= ) | =0 =0t (a9

All other components of t*” vanish.
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8.4 Emission of gravitational waves

We consider the solution
T (
() = 4G / 2

at large distance from the source, || > |7’|, we can neglect |7’| in the retarded
time and in ﬁ, i.e. we consider the 'wave zone’. This yields, with |Z]| = r,

— |7 =77

|7 — 7|

d*z’ (8.50)

4
Y (T, ) = 4G /Tw,(t —r, 1) d. (8.51)

r

To transform (8.51) we use

0= /:rk(?,,TM”d‘g:L' = 0, (/ :EkTMOdgx) —I—/ *o,T ld3

Integrating by parts the second term yields

O (/ kaHOd3x> = /T/fd% : (8.52)

In addition, Gauss’ theorem gives 0 = [ 9; (Tjomkxl) d3z, so

/ Oy (TH°z 2"y PPz = 0, / T2F 2! (8.53)

/(9 (T 2") P’ 5170 70, (2*2") P’z = / (TH2" + T2%) d*x. (8.54)
With (8.53) and (8.52) this yields
%@2 /Toomkxld?’x = %8,5/ (TH2! + T12%) &Pz = /Tkld3x . (8.55)
If we insert this equation in (8.51) we obtain
VR ) = 2TG {82/ p(& )2 P P ’} : (8.56)
t=t—r

where p = T%.

The solution (8.56) is not in TT gauge. To obtain the TT part of the metric we
have to act with the following projection tensor on -;;.

Aw' = PPl = SPwP?,  PY=(3;—n'n)), a'=a'fr,  (357)
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W (@) = BT (E 1) = A ()y(T, 1)

Defining the quadrupole tensor of a (non-relativistic) matter distribution as

Qu = / (32"* 2" — "26M) p(Z, t)d%a" (8.58)
the metric in TT gauge can be expressed as
2G 2G
B (@) = SIARIFQu(t ) = TIORQR (). (8.59)

We now use this in order to calculate the energy emitted by a gravitational wave.
To the lowest (quadratic) order in h,, we have found the result (8.49). Inserting
the above expression, we find

a1 [- 1 ..
0 = 367 72 [szs "‘Z(Qm - Q33)2] . (8.60)

Here we have used that for a wave in z!-direction QgT) = Q;j fori# 1and j # 1.
Setting Z/r =7 = (1,0,0) we find

Gl G 1

2
o TQ [ lele kaka n'n™ + — 1 (le nlnk> }

(8.61)
This formula is valid in a arbitrary direction 7i. The emitted power per unit solid
angle in direction 7 is 7%t%n/ = 9£(77). Such that

dP G

1
a9 = 36n [ QuQi — QpnQu ™! + 5 (lennk)Q}

The loss of energy is obtained by integrating this expression over all the directions.
Using
1 k, 1 L o
— dQ = -¢
47 e 3

and

1 i 1 ij i slj j li
E/nknlnjn dQ = I (5“51 + okigl —|—5k35l)

we find the famous quadrupole formula of Albert Einstein:

——=P= 155 QuQu |- (8.62)

The experimental verification of (8.62) on the pulsar 1913416 made by Hulse and
Taylor deserved a Nobel price in 1993. In the meantime, the quadrupole formula
has been confirmed on several other binary pulsars. Until 2016, this indirect "proof’



Ruth Durrer General Relativity Chap. 8 159

represented the only verification of the existence of gravitational waves. In Jan-
uary 2016, the LIGO Collaboration announced the direct discovery of gravitational
waves emitted from a binary black hole system. We will discuss both discoveries
in more detail in the next paragraph.

Exercice: Setting n’ = 2'/r we define the following moments of the matter dis-
tribution:

M) = [TO Py M) = / T4, ;0%
PO = [Ty Py = [T Dy
Sty = [Tty My(t) = / T, iy

Using the same methods as in the previous paragraph show that
M =0 M =P M7=piyps
pPio=0 Py =89 MU =980

Using these identities show that in the wave zone

4 , 1 ..
00(t, ) = TG M(t_r)+Pj(t—'f’)”j+15”(t—r)nmj+~~ ,
S —4G .
70j(t7$) = , [Pj(t—T)—FSij(t—r)n —i—} ,
- 4G
%‘j(tax) = T[Sij(t—T)—f—---] ,

where for each component the neglected terms are of order (v/c) smaller than the
once taken into account.

Verify that the solution satisfies the Hilbert gauge condition.

Perform a gauge transformation with the vector field

G

r

G

[P} + Pniny], €= T

[AM" + 4P¥n; — Pin* — PYnn;n*] .

& =
Show that this transforms the metric components explicitly into TT gauge, up to
time independent contributions like hégT) =4GM /r = —2®, where @ is the (time
independent) Newtonian potential (and up to terms O(1/7?) which we can neglect
in the wave-zone).
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8.5 Application: gravitational radiation of a bi-
nary star system

We consider a binary star system, where M; and M, are the masses of the stars,
and the energy is £ < 0. We set m; = GMy, my = GM,. We approximate the
orbits of the stars by the Newtonian solution.

The parameters a (semi major axis) and e (excentricity) of the Newtonian orbit
are related to the first integrals £ (energy) and L (angular momentum) by

G M, M, 2, 250y Gu(My + M)
T 92) —
SE p(r= + r°9°) .
= My My /(M; + M) is the reduced mass of the system.

2EL?(M, + M,)
CENGME
These results can be found in any text book on classical mechanics. Furthermore,

the period of the system is given by Kepler’s 3rd law. Setting m; = GM; and
mo = G M, the period of the system is given by

2ma’/?
e (8.65)
vVmi + ms
We wish to calculate the change in the period, T caused by the emission of grav-
itational waves. The binary system orbits in a plane that we choose to be (z,y).

<0, (8.63)

a =

e =1+

L = ur?d. (8.64)

Yy my

1 //.

\19

T2

Figure 8.2: The gravitational wave emission problem in a binary star system

Then, the quadrupole tensor of our system has only x and y components: if I;; is
the inertia tensor,

I;; = /p(f)xixj d*z,

we have
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The quadrupole formula (8.62) then yields

B 7o 11.2 _G ]2 +.I..2 49 I2 1.—.,.2 (5.66)
dt 5 \[‘FAR TS T \ e T Sy w g ' ‘

The semi-major axis a changes because of this energy loss, and this leads to a
change in the period T. To determine this, one must compute the derivatives Iz]
We adopt the coordinates (x,y) as indicated on Fig. 8.2. The distance r between
the two masses is

a(l—e?)
=~ -/ 8.67
14 ecos?d ( )
The positions r; and ry are
e my
mn=——m"T T9=—T"T.
my + Mo my + my

The components of the inertia tensor are

L = /p(f)xixj d?z.

For our mass distribution, p(Z) = M,0(Z — Z1) + M2d(Z — Z2), so that we obtain

mimes

Gl,, = mlx% + mgxg = r? cos? ¥,
my + Mo
Gl,, = iz 2 G2 I,
mi + Mo
Gl,, = MT2 cos 1) sin 19,
my + Mo
GI =G+ Gl = —2"2 42
mi + mo
With L = m2 2 and (8.64) we find
m1+m2
) 1 _ 2
g — Vm +mj)“( ) (8.68)
r
Using (8.67), this leads to
1/2
i . my + my
T = 68111’[9 (m) . (869)

With (8.67), (8.68) and (8.69) we can determine the derivatives of the inertia
tensor:

2m1m2

Gl,, =-— rcosdsind
V/m & maja(l — )
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Gl,, = —M(COS 209 + e cos® )
a(l — e?)

Glow = %(2 sin 219 + 3e cos® ¥ sin )0

Gl,, = N jn;l;)':(l — r(sinv cos ¥ + esin )
Gl,, = %(COS 21 + ecos V) + ecos® V) + €?)
Gl, = —%(2 sin 20 + esin® + 3e cos? ¥ sin 9)J)
Gl,, = o +mr;:;Z(1 —5 r(cos® ) — sin® ¥ + e cos )
Gl,, = —%(sin 20 + esin ¥ + esin ) cos® )

[oy = —%(2 cos 20 — e cos? + 3e cos® ¥)1)
GI = —%e sin 90 .

In (8.66) this finally gives

dE Smfm% 2 2 .. 9 92
v _15a2G(1 oy [12(1 + ecost)” + e”sin 19} 97,

For the averaged loss of energy over a period, we obtain

T 21
dEN 1 %dt:l/ dEL
dt TJ), a TJ), dtg

2
T BG ab(1—e?)T2 Lo T o6¢

24 96

With (8.63) this leads to the following change of the semi-major axis

<da> _ 2a°G <dE> _ 64mama(my +mo)

dt C myme dat/ 5 a3 1(e)

where

73,2 | 37 4
:1+24e + 56°€

f(e) (1 _ 62)7/2
Using Kepler’s 3rd law, we then find

T 3a  96mimy

T 2a 5 a

(m1 + m2)f(e)
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Substituting a by 7" we find with (8.65)

T 96 mqme
— = —— . 8.70
T 5 (%)8/3(7%1 + m2)1/3 f(e) ( )

This formula has been confirmed in several systems. The most remarkable is the
PSR 1913416 binary pulsar system which is a system of two white dwarfs of
masses M; ~ My ~ 1.4M. This system is under observation for more than 40
years and the formula (8.70) is confirmed at a precision of half a percent. The
measured value is Texp = (—2.408 + 0.01) x 1072, whereas the theory predicts
Tiheo = (—2.40243 40.00005) x 107!2. In the experimental value, the effects caused
by the relative acceleration of the binary pulsar with respect to our solar system is
taken into account. This changes the result by about 1%. The uncertainty of the
theoretical value is a consequence of the uncertainty of the masses, the ellipticity
and the semi-major axis of the system. For more details, see C.M. Will [1§]

For this indirect observation of the existence of gravitational waves, the radio-
astronomer Joe Taylor and his student R. Hulse have received the Nobel price in
1993.

In January 2016 the LIGO collaboration has announced the first direct detection
of a gravitational wave with the Advanced LIGO interferometer. The LIGO exper-
iment consists of two interferometers, one in Hanford, Washington State (US) and
one in Livingston, Luisiana (US), both with 4km arm-length optical cavities. The
observation was made on September 14, 2015 while the Advanced LIGO interfer-
ometers where still being tested. The detected signal (GW150914) is in excellent
agreement with two inspiralling black holes with masses 367 M, and (29 +4) Mo,
The final black hole has a mass of (62 + 4)M, with (3 £ 0.3)M radiated in
gravitational waves, see Fig. 8.4. The distance to the event is about 400150 Mpc
corresponding to a cosmological redshift of z ~ 0.09. In the mean time (until the
end of 2015) there have been one other detection (GW151226, 14M,, and 8M,
at more than 50, GW) and a candidate event (LVT151012, 23M, and 13M,, less
than 30).

The waveforms during the inspiral phases are calculated using a post-Newtonian
approximation (up to second order) combined with numerical relativity. This
allows to determine the parameters of the two original black holes. Approximately
250’000 template waveforms are used to cover the parameter space of different
mass ratios and spins. The 'ring down’ phase after coalescence is modelled with
black hole perturbation theory. This allows to determine the parameters of the
final black hole.

Many more detections not only with the LIGO experiment but also with the Euro-
pean VIRGO detector which consists of a 3km interferometer in Pisa, and others
are expected in the near future. Gravitational wave astronomy has just begun.
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Figure 8.3: The decay of the orbital period of the PRS1913+16 binary pulsar
corresponding to about 3.2mm per period is shown as the displacement of the
phase of the orbit at the time of periastron passage, compared to a system whose
period does not decrease. This decrease is explained entirely by the emission
of gravitational waves, as shown by the comparison of the experimental results
(points) with the theoretical curve from the quadrupole formula derived in the
text.

A simple quantity, the so called ’chirp mass’ can, be obtained from (8.70). Replac-
ing T by w = 27n/T we find

w . 96 mime

w5 wsB(my +m2)1/3f(€) '
With M; = m,;/G this yields for e = 0, so that f(e) =1

Mo (M1M2)3/5 :c_3 3 o 3/5
' (M1+M2)1/5 G |96 wt/3

Noting that the frequency of the gravitational mass is given by f = 7w (the
frequency of quadrupole radiation is twice the orbital frequency) , we can write

this as
) 3/5
5 f ]

CS

G

96 71-8/3]011/3

M is the so called chirp mass which can be measured directly from f and f in the
perturbative regime. One assumes that back reaction from gravitational radiation
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Figure 8.4: The first gravitational wave signal detected by the LIGO collaboration

(GW150914) . Figure from Ref. [10].

leads to the decay of the ellipticity of the orbit so that e = 0 can be assumed at

late stages.

For the event GW150914 a chirp mass M =~ 30M; was measured. Setting M, =

rM; with 0 < r we obtain
M r

3/5

My, (1475

or

M1+M2:(1+T>M1:

(14 17)%/5
375

The function (1 + 7)%5/r%/5 for 0 < r has a minimum at r = 1 where it is 20/° ~

2.297. Hence

M, + M, > 2.3M = T0M,,

is a simple consequence which can be obtained in the well understood perturbative
regime. To go beyond this requires higher order perturbation theory, both for the
metric and motion of the binary system as well as in matching to the wave zone.
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This calculation has been performed up to second post Newtonian approximation
for spinning black holes with arbitrary mass ratios. This goes far beyond the level
of this course, see [6] and references therein.

8.6 Gravitational lensing

GIANT ARCS |

<{

-
ARCLETS

<

SMALL ELLIPSES

Figure 8.5: The phase-constant surfaces and the orthogonal light rays are indi-
cated. The lensing effects in the inside region of the dashed cone are strong and
create multiple images, in the center region they are intermediate and lead to the
distortion of the image (medium lensing) whereas in the further region they are
weak and only induce a small distortion of the image (weak lensing).

In section 5.4.6 we saw that in a statical gravitational field, the photon paths,
x()), follow geodesics in the geometry gf; = gij/(—goo). In a quasi-Newtonian
situation, in a weak potential, ¢ < 1, the metric is

g=—(1+2¢)dt* + (1 — 2¢)dx>

so Fermat’s principle is reduced to

S E/,/G;;Z) X2\ = /n(x()\))|>'<()\))|d/\ = /L(x,k)d)\, 65 =0,

(8.71)
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where n(x) ~ 1 — 2¢(x). In other words, the gravitational potential plays the
role of a refractive index and the light propagation in a static gravitational field
is identical to the one in an inhomogeneous medium with refractive index n(x). If
the metric is static but not Newtonian, such that gil; is not diagonal, we have a
situation analogous to an inhomogeneous and anisotropic medium.

As in the optical limit, with
F,, = Re(F,e"),

Maxwell’s equations imply that a photon’s four-momentum is given by the gradient
of the phase 1),
0, = o, and g oo, =0 .

For d\ = ds = the arc length, such that x? = 1, the Euler-Lagrange equation from

(8.71) yields
d d
- <nd—’;) = Vn . (8.72)

This is the optical propagation equation of light rays in an inhomogeneous medium.
The different possibilities depending on the distance between the line of sight and
the lens are shown in fig. 8.5. In a region where a ray can cross a constant phase
surface ('wavefront’) more than once, a source produces more than one image. In
the regions outside the dashed cone, the image is only distorted.

Already Einstein realized the possibility of gravitational lensing, but he did not
believe that we would ever observe it. Fritz Zwicky, in 1937 was the first to predict
the observation of gravitational lenses. The first candidate gravitational lens was
discovered in 1979 and since then, several hundreds of systems have been found,
where multiple images with almost perfect arcs or Einstein rings can be seen (see
e.g. http//www.cfa.harvard.edu/glensdata/).

The vector & = e in eq. (8.72) is a unitary vector and (8.72) is equivalent to
d
s

Here V| denotes the gradient in the plane normal to e. For the deflection angle
defined by & = e;, — eg, this yields

Sfin
&—2 / V.éds . (8.74)

Note that & is a vector in the plane normal to e and the integral is to be taken
along the unperturbed path, x(s) = e(s — si,) (this is the 'Born approximation’
correct to first order in &). By taking the divergence of (8.74) we find

Sfin Sfin Sfin
Vl~d:2/ Algzﬁds:2/ A(pds:g:f/ pds:8:f2, (8.75)

in
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Sfin
Z:/ p

is the density per unit surface projected onto a surface normal to e. In Eq. (8.75)
we use the Newtonian approximation for the gravitational potential. After the
second equal sign, we have replaced A; by A because the additional terms are of
the form d?¢/ds® can be integrated and we neglect the boundary terms 2 (si, /).
Defining the lens potential by

where

)= ¢ds, wehave & =2V ¢ and A ¢ =47GY . (8.76)

The Green function of the two dimensional Laplacian is?

1
(&) = 5 In(l€]) , (8.77)
such that
9(6) =26 [l —¢19(e)a¢’ (5.73)
The deflection angle is then
A E B 5/ / !
= dg’ . .
a(6) =46 [ Eimiene (8.79)
For a point mass M at the origin, $(&') = M§*(¢'), this yields
a(g) = 4GM|£% : (8.80)

For a more general mass distribution but with cylindrical symmetry around the e
axis which corresponds to & = 0 we obtain (exercise!)

MlgDe

a(e) = 16—,

(8.81)

8.6.1 The lens map

In the situation depicted in fig. 8.6, Fuclidean geometry yields in the limit of small
deflection angle &

D, .
n= D—d£ — Dgsa(€) . (8.82)

Isee complément de math. IT
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Figure 8.6: The notation used in the text

Here 7 is the position of the source and & is the position of the image. This defines
the map & — 1. According to fig. 8.6, we also have

E=D40 , and n=D,3, (8.83)
and we can write (8.82) in the form

Dds A
DS '

B=0- (8.84)
Eq. (8.84) is the lens equation. It is useful to write this equation in dimensionless
form. To do so we introduce a length scale & in the plane of the lens. We set
no = (Ds/Dg)&, x = €/& and y = n/no. In addition, we set

Y(&x DyDys . DyD s
k() = 28 o = DD ey and g = 2P0 e | (8.85)
Ecrit 50 oDs
with ) D, G
C pc
Nerit = =0.35 2 . 8.86
v 47TG DdDds & el (DdDds/Ds) ( )

The length 1Gpc (giga parsec) = 10%pc = 3.26 x 10° light-years is a cosmological
distance. The radius of the observable universe is approximately 3H; ' ~ 13Gpc.
Considering a galaxy with mass density pga ~ 10" M /(10kpc)? we obtain

9

Zgal X Pgal X 10kpC ~ 0. 2(31112
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which is of the same order of magnitude, hence gz ~ 1 close to the centre of a
galaxy.

In the rescaled variables, the lens map becomes

y =x —a(x) with (8.87)
1 x—x N N
a(x) = ;/RQ O = VU0 (8.88)

where V = V| is 2-dimensional gradient. The potential ¢ satisfies the 2-dimensional
Poisson equation,

Aty = 2k . (8.89)

The lens map, ¢ : z — y is a gradient map,

v =) =V (3 - v | (8.90)
with .
P(x) = - /R2 In|x — x'|k(x)d*z . (8.91)

The differential (D);; = §;; — 0;0;¢ is symmetric. The standard parameterization

is
l—rk—m —2
Dy = . 8.92
v ( —72 1l—Kk+m ) ( )

Here v, = %(8% — 02)) is o = 01029 = Dp019p. The variable v = v; + i, is the
complex shear and 2(1 — k) = 2 — At is the trace. One can show [8] that, if K > 1
for some values of x, there are always multiple images for certain positions y of the
source. (This condition is sufficient but not necessary). It actually follows straight
from the consideration of the eigen-values of Dy which are given by

)\172 =1—-k=+£ \/ "')/’2 . (893)

Far away from the lens, both x and || are much smaller than one, hence Ay 5 > 0.
If Kk =1 then \; > 0 and Ay < 0 hence at some point Ay and thus the determinant
of D must change sign. In this occasion the number of images changes by (at
least) 2 since an image of negative parity must be present when det D¢ < 0.

The amplification u of an image is [§]

B 1 B 1
~ JdetDg] ~ (1= P

,u (8.94)

The critical lines are given by

detDp(x) =0,
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and the images (under ¢) of the critical lines are the caustics. These are the
positions of the sources where the amplification diverges. Of course this is a for-
mal divergence because for an extended source the amplification remains finite
and for a point source close to a caustic, the light ray approximation is no more
valid. Nevertheless, a source that lies in the neighborhood of a caustic is strongly
amplificated.

8.6.2 The Schwarzschild lens

We finish this chapter with the simple example of a point mass, 3(£) = M§?(&).
Even if the Schwarzschild lens is generated by a singular distribution and so con-
tradicts some general theorems (odd image theorem, see [8]), it is mostly useful
for the study of 'microlensing’.

We will see that a good choice for the length &; is the Einstein radius Rg defined
by
AGM DyD g

e = 2 D,

M DdDds)W

=61 —
610Fo (M@ D, kpc

(8.95)

Because the situation is symmetric under rotations, the deflection angle is of the
form a(x) = a(z)x/r and y = y - x/z, * = £[x|. Furthermore 1) = In(x) so that

a = x~!, and the lens map becomes

1
—r— . 8.96
y=z- - (8.96)

If the source is on the symmetry axis, y = 0, the solutions are x = +1 and the
image forms a circle of radius 1, |£] = Rg. This is an Einstein ring with aperture

angle
o _ Be _ 4GM Dy,
E=Dp,  \\ & DuD,

For any other position y # 0, cylindrical symmetry is broken and there are two

images situated at
1
ri= s <y S 4) (8.97)

The differential of the lens map is

T2

1
(D) = (1 - ﬁ) 0ij +2— 37

with

1
pt = |detDy| = ‘1 - = (8.98)

x4
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For the two images this gives an amplification of

1 N
P L k1 (8.99)
412 +4 Y

If y is large, x_ ~ 0 and p— < 1 while x4, ~ y and pu, ~ 1. The image x_ is
close to the axis and very weak, whereas = is very little modified by the lens. On
the contrary, if y is small, the source is close to the axis, and both images can be
strongly magnified. If they are unresolvable, the significant quantity is the total
amplification,

y?+2

fp = fig + flo = ————— .
’ yvyr+4

For quasars that undergo a lensing effect by a foreground galaxy, this so called
‘micro-lensing’ effect is caused by the stars inside the galaxy which pass very close
to the line of sight from us to the quasar. It is variable in time. This effect has also
been observed for stars in the Large Magellanic Cloud and close to the galactic
centre. It most probably is caused mainly by light stars, either in our galaxy or in
the Large Magellanic Cloud, that passed through the line of sight between us and
the source star (y = 0). Also planets can be discovered in this way, see Fig. 8.7.

OGLE 2005—-BLG-390

1.2 * Danish
I’ﬁ‘\ ¢ Perth
1 & ‘ * OGLE
}x s MOA
Robonet
Canopus

Am
©c o o
N« o)
\lllllll

/

0.2

1 1 1 1 | 1 1 1 1 | 1 1 1 1 I 1 1 1 1 | 1 1 1

—-10 -5 0 5 10
days since 31.0 July 2005 UT

Figure 8.7: A microlensing event involving a planet of about 5 earth masses in a
Keplerian orbit around the lens. Observed in 2005 by the OGLE collaboration.
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8.6.3 The odd number of images theorem

Let us now assume that the mass distribution « is regular and finite so that Vi
decays at infinity and the vector field

X(x) =%~ Vi(x) ~y = V&, ®(x) = 3 (x —y)* ~ ()

is regular with the asymptotic behavior X(x) — x for |x| — oco. Images of the
source at y are the zeros of X. Let us consider such a zero, xy and draw a small
smooth path around it which does not pass trough any other zero (see Fig. 8.8).

. X 0

Figure 8.8: A smooth closed path around x,

Without loss of generality we set x; = 0 and choose the polar angle as the pa-
rameter of our curve, C(¢) = (€ sin ¢, €3 cos ¢). On the curve we parameterize the
vector field by

X(¢) = |X]|(cos ¥, sind) .

1 1 [PTdY(9)

must be an integer. It is called the index (or winding number) of the vector field
X at the critical point x.

The integral

We can orient our coordinate system such that Dy = DX is diagonal and to lowest
order and ¢ can be approximated by

1 1
o = (I)O + 5(13711(0).17% + 5(1)722(0)333 .

close to xg = 0. We assume det Dep(0) = ®11(0)P 22(0) # 0 so that 0 is a simple
zero. To lowest order therefore (we assume our curve to lie very close around x)

X(¢) = (@711271, (1372233‘2) = ((1371161 COS ¢7 @72262 sin ¢) .

For @ ;; and ® 95 > 0, i.e. when X is a minimum of ®, we may choose €; = ® €
and eo = ® ;1€ for some small but positive € so that

tan v = Xy €211P20sing

= 27T —tang.
X1 6(1)711(13722 COSgb an¢
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Hence ¥ = ¢ and N(xp) = 1. The same is possible up to a sign in both, the
choice of €; and the choice of €5 hence the ratio remains unchanged, if both, ® 1,
and ® 9 < 0, i.e. when X is a maximum of ®. Hence both, (simple) minima and
maxima of ® lead to an index N(xg) = 1.

The situation is different for saddle points where one of the eigenvalues, say ® 1; > 0
and the other is negative. Then we have to choose €, = —® g9¢ and €3 = D 1€
which yields

tand = —tan ¢,

and therefore N(xg) = —1. See Fig 8.9 for the configuration of X around different
types of zeros.
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Figure 8.9: The vector field X around a maximum, a minimum and a saddle of ®.

As the index is an integer it cannot change under continuous deformations of the
curve (' as long as the curve C does not pass through a zero of X. On zeros ¥ is
not well defined and we cannot compute our index. Let us assume that we have
encircled each of the finite number of zeros x; of the vector field X, with such a
curve C; which does not cross any other zero. Without crossing a zero we can now
continuously combine these curves to one large curve C' encircling all the images
(zeros of X). We can let |x| become very large on the large curve C' such that X
is well approximated by X ~ x on it. Hence the index of the large curve is equal
to 1. Since it is the same as the sum of all the indices, as C' is obtained from the
sum of all C;’s by a continuous deformation which does not cross any zero, it has
the same index as the sum of all C;. This leads to

l=n4y +n_ —n,

where n denotes the number of minima of ®, n_ denotes the number of maxima
and n is the number of saddle points. For the total number of images this yields

Ngot =Ny +1_ +ng =14 2n;.
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Hence this number is odd. This and much more in gravitational lensing can be
found in Ref. [8], an excellent book even though the observational part is very
much outdated.
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