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Chapter 1

Exterior Algebra and Differential
Forms

We first develop some algebraic preparation which I assume to be more or less
known. I also use this occasion to fix the notation. I also assume that you know
what an m-dimensional differentiable manifold is, we shall denote it by M and its
tangent space at some point x ∈ M is denoted by TxM. The tangent bundle is
TM = ∪{x∈M}TxM.

1.1 Exterior algebra

Let A be a commutative, associative, unitary algebra1 over R and let E be a
module (vector space) on A:

• Commutative: a, b ∈ A⇒ ab = ba

• Associative: a(bc) = (ab)c

• Unitary: ∃ e ∈ A tel que ea = a, ∀a ∈ A, which we shall call 1 in what
follows.

We are interested mainly in the case A = R ou A = F(M) (the (smooth, i.e.
C∞) functions on M), where M is a differentiable manifold and E either a real
finite dimensional vector space or the infinite dimensional vector space of (smooth)
vector fields on M denoted by E = X(M).

1An algebra is a vector space with a multiplication.
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6 Section 1.1

We consider the space of p-linear forms with values in A. Denoting the space of
covariant tensors on E of rank p by Tp(E) we define:

Definition 1.1

1. Λp(E) ⊂ Tp(E) is the space of totally antisymmetric covariant p–tensors,
called p–forms on E:

α(· · · v, · · ·w, · · ·) = −α(· · ·w, · · · v, · · ·)

for all α ∈ Λp(E) and v, w ∈ E.

2. For t ∈ Tp(E) we define the alternation operator A by

(At)(v1, . . . , vp) =
1

p!

∑
σ∈Sp

(sgnσ)t(vσ(1), . . . , vσ(p)) (1.1)

where v1, . . . , vp ∈ E, Sp is the group of permutations of p elements and sgnσ
is the signature of the permutation σ.

Proposition 1.1 A is the projection from Tp(E) to Λp(E), i.e., A is a linear
operator on Tp(E) with A(Tp(E)) = Λp(E) and A ◦ A = A.

Proof: Exercice.

Definition 1.2 (exterior product) For ω ∈ Λp(E), η ∈ Λq(E), we define the
exterior product

Λp+q(E) 3 ω ∧ η :=
(p+ q)!

p!q!
A(ω ⊗ η) , (1.2)

where ⊗ denotes the usual tensor product.

Example 1 : Be (θi)ni=1 a basis of E∗ = Λ1(E) and (ei)
n
i=1 the dual basis of E,

i.e. θi(ej) = δij. Show that for two vectors v = viei and w = wiei we obtain

θi ∧ θj(v, w) = viwj − vjwi .

Note that we denote basis vectors with low indices and 1-forms or co-vectors (el-
ements of the dual vector space E∗) with upper indices, while for components we
use the opposite convention.
We also use Einstein’s summation convention: Double indices are summed over,

viei ≡
∑n

i=1 v
iei.
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Proposition 1.2 The exterior product has the following properties:

1. (ω1 + ω2) ∧ η = ω1 ∧ η + ω2 ∧ η, for ω1, ω2 ∈ Λp(E) and η ∈ Λq(E).

2. a(ω ∧ η) = (aω) ∧ η = ω ∧ (aη) for a ∈ A

3. ω ∧ η = (−1)pqη ∧ ω

4. (ω1∧ω2)∧ω3 = ω1∧ (ω2∧ω3), for ω1 ∈ Λp(E), ω2 ∈ Λq(E) and ω3 ∈ Λk(E).

The ∧-product is thus bilinear and associative.

Proof: Exercise.

Proposition 1.3 Let (θi)ni=1 be a basis of E? = Λ1(E). Then the products

(θi1 ∧ θi2 ∧ · · · ∧ θip); 1 ≤ i1 < i2 < · · · < ip ≤ n

form a basis of Λp(E).
Consequently the dimension of Λp(E), p ≤ n, is

dim(Λp(E)) =

(
n

p

)
=

n!

p!(n− p)!
.

For p > n, Λp(E) = {0}.

Proof: Exercise.

Definition 1.3 (Grassmann algebra) The Grassmann algebra (or exterior
algebra) over the vector space E is the direct sum

Λ(E) =
n⊕
p=0

Λp(E)

According to proposition 1.3, dim Λ(E) = 2n.
Λ(E) is a graded algebra (associative and unitary). We set Λ0(E) = A.

Definition 1.4 (interior product) The interior product is the map (p > 0)

E × Λp(E)→ Λp−1(E)
(v, ω) 7→ ivω

where (ivω)(v1, . . . , vp−1) := ω(v, v1, . . . , vp−1).
For ω ∈ Λ0(E) we define ivω ≡ 0. The interior product allows us to define the
map

i : E × Λ(E)→ Λ(E) : (v, ω) 7→ ivω.
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Proposition 1.4

1. iv is A-linear

2. iv(Λ
p(E)) ⊆ Λp−1(E)

3. iv(ω ∧ η) = (ivω) ∧ η + (−1)pω ∧ (ivη) for ω ∈ Λp(E) and η ∈ Λq(E).

In other words, iv is an anti-derivation of degree -1 on Λ(E) (see def. 1.5 below).

Proof: Exercice.

For this we make use of the definition

Definition 1.5 (derivation, anti-derivation)
A map θ : Λ(M)→ Λ(M) is a derivation (respectively anti-derivation) of degree
k ∈ Z, if

1. θ is A-linear

2. θ(ω ∧ η) = θω ∧ η + ω ∧ θη, for ω, η ∈ Λ(M)
(anti-derivation if: θ(ω∧η) = θω∧η+(−1)pω∧θη, ω ∈ Λp(M), η ∈ Λ(M)).
This is called the Leibnitz rule.

3. θ(Λp(M)) ⊂ Λp+k(M), 0 ≤ p ≤ n.
(For p+ k > n or p+ k < 0 we set Λp+k(M) = {0}.)

1.2 Differential forms

LetM be a differentiable manifold of dimension m. For p = 0, 1, . . . ,m and x ∈M
we consider the spaces

Λp(TxM) ⊂ Tx(M)0
p ∀p ≥ 1

Λ0(TxM) = R; Λ1(TxM) = (TxM)?

Λ(TxM) =
n⊕
p=0

Λp(TxM).

Here Tx(M)0
p denotes the space of p-fold covariant (and 0-fold contravariant) ten-

sors over the tangent space of M at x, Tx(M).

Definition 1.6 ( differential forms) A differential form of degree p is a (smooth)
covariant tensor field of degree p, called ω, such that ω(x) ∈ Λp(TxM) for all
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x ∈ M. Sometimes we denote ω(x) by ωx or we simply suppress the argument x.
Often we call differential form of degree p simply a p-form.
Λp(M) is the module of p–forms on F(M).

Λ(M) =
n⊕
p=0

Λp(M) is the exterior algebra of differential forms on M.

As all the elements of Λ(M) are tensor fields, all results on tensor fields are also
valid for differential forms.

The algebraic operations introduced in the previous section are defined point by
point for differential forms, also the exterior product. For ω ∈ Λp(M), X1, . . . , Xp ∈
X(M), the mapping

x 7→ ωx(X1(x), . . . , Xp(x))

is a smooth function on M. The map

X(M)× · · · ×X(M)︸ ︷︷ ︸
p times

→ F(M) : (X1, . . . , Xp) 7→ ωx(X1, . . . , Xp)

is F(M)-linear and completly anti-symmetric.
For a vector field X we define the interior product

(iXω)x ≡ iX(x)ωx

In a local coordinate system, (x1, . . . , xm; U), ω ∈ Λp(M) can be written in the
basis dxi as

ω =
∑

1≤i1<···<ip≤m

ωi1···ipdx
i1 ∧ · · · ∧ dxip

=
1

p!

m∑
i1,···,ip=1

ωi1···ipdx
i1 ∧ · · · ∧ dxip ,

where the ωi1···ip with arbitrary index positions are obtained from those with i1 <
i2 . . . < ip by anti-symmetry.

Remark: Here dxi is the 1-form which assigns to a vector field of the form X =∑m
j=1 v

j∂j the component vi. (For a function df =
∑m

j=1 ∂jf dx
j.)

Example 2: Consider M = R2 with Cartesian coordinates (x, y) and the vector
fields X = f(x, y)∂x, Y = g(x, y)∂y and Z = h1(x, y)∂x + h2(x, y)∂y as well as
the 2-form ω = dx ∧ dy. Here f , g, h1 and h2 are arbitrary C∞ functions of R2.
Determine the 1-forms iXω, iY ω and iZω.

Let ϕ : M → N be a differentiable map from the manifold M to the manifold N.
The fact that the pull-back is linear and respects the tensor product ⊗ implies
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that it also commutes with the wedge (exterior) product2,

ϕ? : Λ(N)→ Λ(M) ,

ϕ?(ω ∧ η) = ϕ?ω ∧ ϕ?η. It is therefore an algebra homomorphism from Λ(N) into
Λ(M). If ϕ is a diffeomorphism, ϕ? is even an isomorphism with (ϕ?)−1 = (ϕ−1)?.

Exercise: Show that the Lie derivative, LX for an arbitrary vector field X is a
derivation of degree 0.
Hint: You just have to show that for ω ∈ Λp(M) also LXω ∈ Λp(M), the rest is
clear from the general properties of the Lie derivative on tensor fields. These are
assumed known. One can also show that for an arbitrary p-form the Lie derivative
is given by

(LXω)(v1, · · · , vp) = X((ω(v1, · · · , vp))− ω([X, v1], v2, · · · , vp)

· · · − ω(v1, · · · , vp−1, [X, vp]) . (1.3)

This is actually the formula for the Lie derivative of an arbitrary covariant tensor
field.

Proposition 1.5

• For anti-derivations θ, θ′ of degrees k, k′, θ◦θ′+θ′◦θ is a derivation of degree
k + k′, if k and k′ are both odd.

• For anti-derivations θ, θ′ of degrees k, k′, θ ◦ θ′− θ′ ◦ θ ≡ [θ, θ′] is a derivation
of degree k + k′, if k and k′ are both even.

• For derivations θ, θ′ of degrees k, k′, [θ, θ′] is a derivation of degree k + k′.

Proof: Simple calculation.

Proposition 1.6 The (anti-)derivations of Λ(M) are local, i.e. for an open set
U ⊂ M and ω ∈ Λ(M) such that ω|U = 0 we have θω|U = 0, for an arbitrary
(anti-)derivation θ.

Proof: Let us consider ω ∈ Λ(M) such that ω|U = 0. For any given x ∈ U there
exists a function h ∈ F(M) such that h(x) = 1 and h|M\U = 0. Hence h · ω ≡ 0.
Linearity then implies, θ(hω) = 0, and therefore θh ∧ ω + h · θω = 0 in x which
implies (θω)x = 0. 2

2For a covariant tensor field t on N the pullback ϕ? is a covariant tensor field on M defined
by (ϕ?t)x(v1, · · · , vp) = tϕ(x)(Tϕv1, · · · , Tϕvp).
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Consequently, for ω = ω′ in U ⊂M we have θω = θω′ in U for every (anti-)derivation
θ. We can therefore uniquely define θ|U on Λ(U):
for x ∈ U and α ∈ Λ(U) we choose α̃ ∈ Λ(M) such that α̃ = α in a neighborhood
of x and we set (

θ
∣∣∣
U

)
α(x) = (θα̃)(x).

According to proposition 1.6, this definition is independent of the choice of α̃. The
existence of such an extension α̃ is a consequence of the continuation lemma:

Lemma 1.1 (continuation lemma ) Let U ⊂ M be an open set and K ⊂ U a
compact set. For all β ∈ Λ(U) there existe an α ∈ Λ(M) such that

β
∣∣∣
K

= α
∣∣∣
K

et α
∣∣∣
M \U

= 0.

Proof: There exists a function h ∈ F(M) with h(x) = 1 ∀x ∈ K and h(x) =
0 ∀x ∈M \ U. We can thus choose

α(x) =

{
h(x)β(x), x ∈ U
0, x ∈M \ U

2

We hence have the following result:

Proposition 1.7 (localisation theorem) Let θ be an (anti-)derivation on Λ(M),
U ⊂M an open set. There exists a unique (anti-)derivation θU on Λ(U) such that

(θα)
∣∣∣
U

= θU
(
α
∣∣∣
U

)
for all α ∈ Λ(M)

We also need a globalisation theorem:

Proposition 1.8 (globalisation theorem) Let (Ui)i∈I be an open covering of
M. For i ∈ I, let θi be an (anti-)derivation on Λ(Ui) and θij its restriction to
Ui ∩ Uj. If θij = θji for every pair (i, j) ∈ I × I, then there exists a unique
(anti-)derivation θ ∈ Λ(M) such that θi = θ|U i.

Proof: For α ∈ Λ(M) and x ∈ Ui we define

(θα)x = θi

(
α
∣∣∣
U i

)
x

. (1.4)

Since (
(θα)

∣∣∣
U j

) ∣∣∣
U i

= θji

(
α
∣∣∣
U i∩U j

)
= θij

(
α
∣∣∣
U i∩U j

)
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=

(
(θα)

∣∣∣
U i

) ∣∣∣
U j

Eq. (1.4) is independent of the choice of Ui as long as x ∈ Ui, and hence θα is well
defined. 2

We can now also show the following very useful property of (anti-)derivations:

Proposition 1.9 Let θ be an (anti-)derivation of degree k and θf = θdf = 0 (*)
for all f ∈ F(M). Then

θ ≡ 0.

Proof: We choose an atlas (hi, Ui) of M. We then set θi := θ|U i . It is thus
enough to show that θi ≡ 0 for all i. But in a local coordinate system (x1, . . . , xn)
on Ui an arbitrary p-form α ∈ Λp(M) can be written as

α
∣∣∣
U i

=
∑

αj1···jpdx
j1 ∧ · · · ∧ dxjp .

And because of Leibnitz’s rule (point 2 of definition 1.5) and the condition (*)

(θα)
∣∣∣
U i

= θi

(
α
∣∣∣
U i

)
= 0.

2

Consequence 1.10 An (anti-)derivation on Λ(M) is uniquely determined by its
values on the functions (= Λ0(M)) and on the ”gradients”, {df | f ∈ F(M)} ⊂
Λ1(M).

1.3 The exterior derivative

Theorem 1.1 There exists a unique map

d : Λ(M)→ Λ(M)

with the following properties:

1. d is an anti-derivation of degree 1

2. d ◦ d = 0

3. df is the gradient of f for all f ∈ F(M), i.e., df(X) = Xf , for f ∈ F(M),
X ∈ X(M).
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Proof: The uniqueness is a consequence of 1.10. (Point 3 determines d on the
functions and 2 determines it on the gradients.) Hence we just have to show the
existence.
Since a form α ∈ Λp(M) on a chart (x1, . . . , xm; U) can be written in the form

α
∣∣∣
U

=
∑

1≤i1<···<ip≤m

αi1···ip ∧ dxi1 ∧ · · · ∧ dxip , αi1···ip ∈ F(M)

Points 2 & 3 and the Leibniz rule determine

dα
∣∣∣
U

2,Leibn.
===

∑
1≤i1<···<ip≤m

dαi1···ip ∧ dxi1 ∧ · · · ∧ dxip ∈ Λp+1(M) (1.5)

3
==

∑
1≤i1<···ik<···<ip+1≤m

p+1∑
k=1

(−1)k+1 ∂

∂xik
α
i1···ik

∧

···ip+1

dxi1 ∧ · · · ∧ dxip+1 .

(The notation i1 · · · ik

∧

· · · ip+1 means: ”leave out the index ik”.) Derive the equality
3 in detail! The globalisation theorem 1.8 implies then the existence of the operator
d on Λ(M). 2

The components of dα are given by

(dα)i1···ip+1 =

p+1∑
k=1

(−1)k+1 ∂

∂xik
α
i1···ik

∧

···ip+1

, i1 < i2 < · · · < ip+1 (1.6)

Definition 1.7 (exact and closed differential forms )
A differential form α ∈ Λ(M) is called exact if there exists a form β such that
α = dβ; α is called closed if dα = 0.

Since d ◦ d = 0, every exact form is closed. Locally, the inverse is also true:

Lemma 1.2 (Poincaré Lemma) Let α ∈ Λ(M) be closed. For all x ∈M exists
an open set U ⊂M, with x ∈ U such that α|U is exact.

Proof: See e.g. Spivak [14], ”Calculus on manifolds”.

Proposition 1.11 Let ϕ : M → N be a differentiable map from the differentiable
manifold M to the differentiable manifold N . The following diagram is commuta-
tive, in other words d ◦ ϕ? = ϕ? ◦ d.

Proof: This property is well known for functions, here we show that it holds
generically for the exterior derivative on forms. For an arbitrary covariant tensor
field t ∈ T0

s (N) and vi ∈ TxM, the pullback, ϕ?t ∈ T0
s (M) is defined by

(ϕ?t)x(v1, . . . , vs) := tϕ(x)(Txϕv1, . . . , Txϕvs) , (1.7)
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??
�

�Λ(M) Λ(N)

Λ(M) Λ(N)
ϕ?

ϕ?

d d

where Txϕ is the tangent map of ϕ at x. For a function f ∈ F(N) and a vector
v ∈ TxM

(ϕ?df)x(v) = (df)ϕ(x)(Txϕv) = Txϕ(v)f = v(f ◦ ϕ) = v(ϕ?f) = d(ϕ?f)(v) , (1.8)

i.e. ϕ?df = d(ϕ?f). Applying d on this we have thus

d(ϕ?df) = d(dϕ?f) = d ◦ d(ϕ?f) = 0 = ϕ?((d ◦ d)f) .

Our statement now follows with prop. 1.9. 2

1.4 Relations between d, iX and LX

As a reminder let us write the explicite formula for Lie derivative of a p-form,
ω ∈ Λp(M):

(LXω)(v1, · · · vp) = LX (ω(v1, · · · vp))−ω([X, v1], v2, · · · vp)−· · ·−ω(v1, · · · , [X, vp]) .
(1.9)

Here we have used that for a vector field v we have LXv = [X, v].

According to Def. 1.5, d is an anti-derivation of degree 1, iX , X ∈ X(M) is an
anti-derivation of degree −1 and LX is a derivation of degree 0 on Λ(M).

Proposition 1.12 (Cartan’s magic formula)
For X ∈ X(M) and ω ∈ Λp(M) we have

LXω = (d ◦ iX + iX ◦ d)ω (1.10)

Proof: According to proposition 1.5, θ = d ◦ iX + iX ◦ d is a derivation of degree
0. Hence if θf = LXf and θ(df) = LXdf for all f ∈ F(M), Eq. (1.10) is shown.
But for f ∈ F(M)

θ(f) = iXdf = df(X) = Xf = LXf,
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and
θ(df) = d ◦ iXdf = d(Xf).

On the other hand

(LXdf)(Y ) = LX(df(Y ))− df(LXY ) = LX(Y f)− df([X, Y ])

= X(Y f)− [X, Y ]f = Y (Xf) = (d(Xf)) (Y ) .

2

With d ◦ d = 0, Eq. (1.10) implies

LX ◦ d = d ◦ LX = d ◦ iX ◦ d . (1.11)

Another very useful identity is (exercise!)

i[X,Y ] = [LX , iY ]. (1.12)

Proposition 1.13 For ω ∈ Λp−1(M) and Xi ∈ X(M),

dω(X1, . . . , Xp) =
∑

1≤i≤p

(−1)i+1Xiω(X1, . . . , Xi

∧

, . . . , Xp)

+
∑

1≤i<j≤p

(−1)i+jω([Xi, Xj], X1, . . . , Xi

∧

, . . . , Xj

∧

, . . . , Xp) (1.13)

(again Xi

∧

denote omission of Xi).

Proof: For p = 1, Eq. (1.13) reduces to df(X) = Xf .
For ω ∈ Λ1(M), (1.10) gives

(LXω)(Y ) = (iXdω)(Y ) + d(iXω)(Y ) = dω(X, Y ) + Y (ω(X)).

With (LXω)(Y ) = X(ω(Y ))− ω([X, Y ]) it follows that

dω(X, Y ) = X(ω(Y ))− Y (ω(X))− ω([X, Y ]),

i.e., Eq. (1.13).
By induction one can now show the step from p to p+ 1 using Eq. (1.10) and the
explicit formula for LXω. 2

Proposition 1.14 Let ∇ be a covariant derivative for a symmetric connection.
For ω ∈ Λp(M) we find

A(∇ω) =
(−1)p

p+ 1
dω (1.14)
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Proof: For ω ∈ Λp(M)

∇ω(X2, . . . , Xp+1, X1) = (∇X1ω)(X2, . . . , Xp+1)

= X1(ω(X2, . . . , Xp+1))−
p+1∑
i=2

ω(X2, . . . ,∇X1Xi, . . . , Xp+1)

A(∇ω)(X2, . . . , Xp+1, X1) =
1

p+ 1

[
p+1∑
i=1

(−1)i+1Xiω(X1, . . . , Xi

∧

, . . . , Xp+1)

+
∑
i<j

(−1)i+jω(∇XiXj −∇XjXi, X1, . . . , Xi

∧

, . . . , Xj

∧

, . . . , Xp)

]
.

But since the torsion vanishes ∇XiXj −∇XjXi = [Xi, Xj]. Hence

A(∇ω)(X2, . . . , Xp+1, X1) =
1

p+ 1
dω(X1, X2, . . . , Xp+1) (1.15)

A(∇ω)(X1, X2, . . . , Xp+1) =
(−1)p

p+ 1
dω(X1, . . . , Xp+1) . (1.16)

2

Proposition 1.15 Be X = X`∂` a vector field on a (pseudo-)Riemannian mani-
fold (M, g) with Levi-Civita connection ∇, and be X[ = X`dx

` the associated
1-form (X` = g`mX

m). Then

∇X[ =
1

2

(
LXg − dX[

)
. (1.17)

Proof: By prop. 1.14, twice the antisymmetric part of the covariant derivative
of a 1-formis is the the exterior derivative (with opposite order). Hence, for two
arbitrary vector fields Y and Z,

∇X[(Y, Z)−∇X[(Z, Y ) = dX[(Z, Y ) . (1.18)

For the symmetric part we write

∇X[(Y, Z) +∇X[(Z, Y ) = ∇Z(X[(Y ))−X[(∇ZY ) +∇Y (X[(Z))−X[(∇YZ) .
(1.19)

As X[(Y ) = X`Y
` = g`mX

mY ` = g(X, Y ) this gives

∇X[(Y, Z) +∇X[(Z, Y ) = ∇Z(g(X, Y ))− g(X,∇ZY ) +∇Y (g(X,Z))− g(X,∇YZ)

= g(∇ZX, Y ) + g(∇YX,Z) . (1.20)
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For the second equal sign we used the Ricci identity, for any three vector fields
X, Y, Z,

∇Z(g(X, Y ))− g(∇ZX, Y )− g(X,∇ZY ) = 0 , (1.21)

which is just ∇g ≡ 0. But with [X, Y ] = ∇XY −∇YX we also have

(LX)g(Y, Z) = X(g(Y, Z))− g([X, Y ], Z)− g(Y, [X,Z])

= X(g(Y, Z))− g(∇XY, Z) + g(∇YX,Z)− g(Y,∇XZ) + g(Y,∇Z , X)

= g(∇YX,Z) + g(Y,∇Z , X) , (1.22)

where we have again used the Ricci identity. Hence

∇X[(Y, Z) +∇X[(Z, Y ) = (LX)g(Y, Z) . (1.23)

Summing up the symmetric part given above and the anti-symmetric part given
in (1.18) yields (1.17). 2

An important application of Eq. (1.17) is the Killing equation. A Killing field is a
vector field b under the flow of which, denoted by Φs, the metric is invariant, hence
Φ∗sg = g. The flow of a Killing field is therefore a 1-parameter group of symmetries
of the metric. Invariance implies

0 = lim
s→0

Φ∗sg − g
s

= Lbg . (1.24)

Definition 1.8 (Killing field) A vector field b that satisfies

Lbg = 0 (1.25)

is called a Killing field for the metric g.

According to Eq. (1.17), the symmetric part of the covariant derivative of b vanishes
for a Killing field and ∇b[ = −db[/2. In coordinates,

bµ;ν + bν;µ = 0 . (1.26)

This equation is called the Killing equation.

1.5 The ∗-Operation and the Codifferential

Definition 1.9 A differentiable manifold M is called ’orientable’ if it admits an
atlas A such that for arbitrary charts (h, U) and (k, V) the determinant of the
Jacobian of the coordinate change h ◦ k−1|h(U )∩k(V ) is positive. The atlas A is then
called an oriented atlas of M and (M,A) form an oriented manifold.
An equivalence class of oriented atlases (two oriented atlases are called equivalent
if their union is also oriented) is called an orientation of the manifold M.
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There exist manifolds which are not orientable. Examples are the Möbius strip or
the Klein bottle. More precisely: one can show that every non-orientable manifold
contains the möbius strip as a submanifold.

Exercice: Show that the Möbius strip is not ortientable. The Möbius strip is
the manifold obtained from the the square [0, 1]× [0, 1] where we identify (0, x) ≡
(1, 1− x), see Fig. 1.1.

Figure 1.1: The Möbius strip.

A chart (h, U) of an oriented manifold(M,A is said to be positive (negative) if
for every chart (k, V) ∈ A, the determinant of the Jacobian of k ◦ h−1 is positive
(negative).

We state the following theorem without proof:

Theorem 1.2
Let M be an m-dimensional, paracompact, orientable manifold. There exists on
M an m-form which does not vanish anywhere on M. Such an m-form is called a
volume form of M. The converse is also true.

It is clear that this can be achieved locally, on a coordinate patch, by introducing
dxi ∧ · · · dxm, but that such a form exists globally on an orientable manifold is
non-trivial.

We now consider an orientable (pseudo-)Riemannian manifold (M, g). In a coordi-
nate patch (x1, · · · , xm), the components of the metric are gij(x) and we introduce

|g(x)| = | det (gij(x)) | . (1.27)

Let ḡij be the metric components wrt new coordinates (y1, · · · ym) within an ori-
ented atlas. Then

|ḡ| = | det (ḡij) | = | det (gij) |
[
det

(
∂xk

∂yl

)]2

. (1.28)
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We now assume thatM is orientable and the coordinates (x1, · · · , xm) and (y1, · · · ym)
have the same orientation so that det

(
∂xk/∂yl

)
> 0. Then

√
|ḡ| =

√
|g| det

(
∂xk

∂yl

)
. (1.29)

On the other hand, if a m-form ω is given in the two coordinate systems by

ω = a(x)dx1 ∧ · · · ∧ dxm = ā(y)dy1 ∧ · · · ∧ dym ,

the functions a and ā are related by ā = a det(∂x/∂y) ( Exercise! ). Hence, for
positive coordinate systems,

η =
√
|g|dx1 ∧ · · · ∧ dxm (1.30)

defines an m-form on M. (The function
√
|g| has the correct behavior under

coordinate transformations.) Since g never vanishes, η is a volume form. It is
called the canonical volume form on (M, g).

1.5.1 The ∗-operation

Let (M, g) be an m-dimensional oriented (pseudo-)Riemannian manifold and let
η ∈ Λm(M)be the canonical volume form defined in Eq. (1.30). We now use η to
associate to each form ω ∈ Λp(M) an (m − p)-form ∗ω. To do so we consider a
positive local coordinate system (x1, . . . , xm) and write ω in the form

ω =
1

p!

∑
i1···ip

ωi1···ipdx
i1 ∧ · · · ∧ xip , (1.31)

where the coefficients ωi1···ip are totally antisymmetric. We can write η in the same
form by introducing the totally antisymmetric symbol

εi1···im =

{
sign(1, . . . ,m 7→ i1, . . . , im) if 1, . . . ,m 7→ i1, . . . , im is a permutation,
0 if two indices are equal.

(1.32)
With this definition we have for

η =
√
|g|dx1 ∧ · · · ∧ dxm =

1

m!

∑
i1···im

ηi1···imdx
i1 ∧ · · · ∧ xim

with

ηi1···im =
√
|g|εi1···im .
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Definition 1.10 For a p-form given in local coordinates by (1.31) we set ωi1···ip ≡
gi1j1 · · · gipjpωj1···jp. The Hodge dual of ω is then defined by

(∗ω)ip+1···im =
1

p!
ηi1···imω

i1···ip . (1.33)

Here (and in the following) summation over all index pairs is assumed (Einstein’s
summation convention).

This definition is independent of the chosen coordinate system (it consists in raising
indices and then tracing over the indices i1 to ip which are both tensor operations).
The correspondence ω 7→ ∗ω defines an isomorphism from Λp to Λm−p. A simple
calculations (exercise!) shows that

∗(∗ω) = (−1)p(m−p)sgn(g)ω , (1.34)

where sgn(g) is the signature of the metric g. Hence up to a sign ∗ it its own
inverse. Note that in the physical case with m = 4 and sgn(g) = −1, 1- and
3-forms do not acquire a sign after two ∗ operations while 0- 2- and 4-forms do.

Exercises:

• consider R3 with the Euclidean metric. For a 1-form A = Aidx
i show that

(∗dA)i = (rotA)i, where rot indicates the usual curl in 3-dimensions.

• Consider two p-forms, α, β ∈ Λp(M). Show that

α ∧ ∗β = ∗α ∧ β = 〈α, β〉η , (1.35)

where we have introduced a scalar product on Λp, 〈α, β〉 ≡ 1
p!
αi1···ipβ

i1···ip .

• Show also that 〈∗α, ∗β〉 = sgn(g)〈α, β〉 and that for α ∈ Λp(M) and β ∈
Λm−p(M), 〈α ∧ β, η〉 = 〈∗α, β〉.

1.5.2 The co-differential

We now introduce an important differential operator which generalizes the notion
of ’divergence’ to differential forms.

Definition 1.11 The co-differential δ : Λp → Λp−1 is defined as

δ = sgn(g)(−1)m(p+1) ∗ d ∗ . (1.36)
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The sign chosen here is not a standard convention. We have chosen this sign in
order not to have any signs in the coordinate expression given in Eq. (1.37). One
can show that the co-differential is an anti-derivation of degree −1.

Since d ◦ d = 0 and ∗∗ = ±identity, also δ ◦ δ = 0. Furthermore, δω = 0 is
equivalent to d ∗ ω = 0. Therefore, the Poincaré Lemma implies that if δω = 0
there exists locally a form φ such that ∗ω = dφ. Hence, ω = ± ∗ dφ = δψ where
ψ = ± ∗ φ. We therefore have the result

Proposition 1.16 If δω = 0, then there exists locally a p+1 form ψ with ω = δψ.

Local coordinate expression for the co-differential

For ω ∈ Λp the coordinate expression for δω is given by

δωi1···ip−1 =
1√
|g|

(√
|g|ωk i1···ip−1

)
,k
. (1.37)

Proof: We write

(∗d ∗ ω)k1···kp−1 =
1

(m− p+ 1)!
ηi1···im−p+1 k1···kp−1(d ∗ ω)i1···im−p+1 . (1.38)

This follows directly from the definition 1.10 of the ∗ operator. Now, for an arbi-
trary s-form α we have in local coordinates

α =
1

s!
αi1···is,dx

i1 ∧ · · · ∧ dxis (1.39)

dα =
1

s!
αi1···is,is+1dx

is+1 ∧ dxi1 ∧ · · · ∧ dxis (1.40)

=
(−1)s

s!
αi1···is,is+1dx

i1 ∧ · · · ∧ dxis+1 (1.41)

=
(−1)s(s+ 1)

(s+ 1)!
α[i1···is,is+1]dx

i1 ∧ · · · ∧ dxis+1 (1.42)

where [i1 · · · is, is+1] denotes anti-symmetrisation. Hence

(dα)i1···is+1 = (−1)s(s+ 1)α[i1···is,is+1] .

Using this in (1.38) we obtain

(∗d ∗ ω)k1···kp−1 =
(−1)m−p(m− p+ 1)

(m− p+ 1)!
ηi1···im−p+1 k1···kp−1(∗ω)[i1···im−p,im−p+1] .
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Since η is already anti-symmetric we can ignore anti-symmetrization in d∗ω. Using
once again the definition 1.10 we obtain

(∗d ∗ ω)k1···kp−1 =
(−1)m−p

(m− p)!p!
ηi1···im−p+1 k1···kp−1(ηj1···jpi1···im−pω

j1···jp),im−p+1 .

We now insert

ηi1···im =
√
|g|εi1···im and ηi1···im =

√
|g| det

(
(g−1
ij

)
εi1···im =

sgn(g)√
|g|

εi1···im .

(The totally anti-symmetric symbol ε is identical for arbitrary index positions.)
Furthermore

εi1···im−p j1···jpε
i1···im−p im−p+1k1···kp−1 = p!(m− p)!δim−p+1

[j1
δk1j2 · · · δ

kp−1

jp]

where again [· · ·] denotes anti-symmetrisation. Calling the index im−p+1 k then
yields

(∗d ∗ ω)k1···kp−1 = (−1)m−p−p(m−p)sgn(g)
1√
|g|

(√
|g|ωk k1···kp−1

)
,k .

The sign comes from ordering the indices in the two ε tensors in a convenient way.
Finally, using the definition δ = sgn(g)(−1)m(p+1) ∗ d∗ we obtain (1.37). 2

Exercise: Show that for a one form a = Aidx
i in flat space, the co-differential

is the usual divergence, δa = Ai,i = divA.

Exercise: Show that the ∗-operation commutes with the pull-back by an orien-
tation preserving isometry φ : M→M , φ∗g = g. Conclude that the same is true
for the co-differential. What happens if the orientation is reversed?

Exercise: Maxwell’s equation. We introduce the 1-form related to the elec-
tromagnetic 4-potential A = Aµdx

µ. Show that Maxwell’s field strength tensor
Fµν is then given by

dA = F =
1

2
Fµνdx

µ ∧ dxν

and Maxwell’s equation become

dF = 0 , δF = −4πJ . (1.43)

where J is the current 1-form J = jµdx
µ = ρdt + jidx

i. Show that in terms of
forms, gauge-invariance of electromagnetism is simply the statement that under a
change A → A + dχ the field tensor F remains invariant, which is a consequence
of d ◦ d = 0. Show also that charge conservation, δJ = ∂µj

µ = 0 follows from
Maxwell’s equation (1.43).
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We finally introduce the wave operator (Laplace-Beltrami operator) on forms

2 = d ◦ δ + δ ◦ d . (1.44)

The Laplace-Beltrami operator is a derivation of degree 0.

In Lorentz gauge defined by δA = 0, we have 2A = −4πJ .

1.6 Theorems of Stokes and Gauss

To define an integral over an m-dimensional manifold one first considers a m-
form which is non-vanishing only in one chart (Ui, hi) where it takes the form
ω = f(x)dx1 ∧ · · · ∧ dxm and one defines∫

M
ω =

∫
Ui

f(x)dxm , (1.45)

where the right hand side is the usual Lebesgue integral. This definition is inde-
pendent of the chosen chart since the Lebesgue measure and ω transform in the
same way under coordinate transformations. To extend this definition one uses a
partition of unity, i.e. a set of functions {ϕj} on M which are such that ϕj(x) 6= 0
only in one chart, Ui(j), and ϕj(x) ≥ 0 and such that each ϕj has compact support
and, especially, ∑

j

ϕj(x) = 1 ∀x ∈M .

For an arbitrary m-form ω therefore

ω =
∑
j

ϕjω =
∑
j

ωj

Since each ωj has support only in one chart we can now define∫
M

ω :=
∑
j

∫
Ui(j)

ωj . (1.46)

We now consider a region (a connected open subset) D ⊂ M with a smooth
boundary ∂D. A boundary ∂D is called smooth if it is a C∞ submanifold of M
of dimension m − 1. For an m−form ω we define the integral of ω over D by∫
D
ω =

∫
M χD · ω where χD is the indicator function of the set D.

The theorem of Stokes then says
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Theorem 1.3 Stokes
Be ω an m− 1 form on M. Then via the inclusion map ι : ∂D →M this defines
a m− 1 form ι∗ω on ∂D which we also denote by ω. We then have∫

D

dω =

∫
∂D

ω . (1.47)

Proof: See e.g. [14].

Be now Ω an arbitrary m form which does not vanish anywhere onM (such volume
forms exist ifM is orientable) and X a vector field onM. We define the divergence
of X wrt. Ω, a function denoted divΩX, by

LXΩ = (divΩX)Ω . (1.48)

Since LXΩ is an m-form, there exists a function f such that LXΩ = fΩ and this
function is called divΩX, i.e. the divergence of X wrt Ω.

Cartan’s formula gives

LXΩ = (d ◦ iX + iX ◦ d)Ω = d(iXΩ) . (1.49)

Stoke’s theorem now implies Gauss’ theorem,

Theorem 1.4 Gauss
Be X a vector field on M and D ⊂M a region. Then∫

∂D

iXΩ =

∫
D

(divΩX)Ω . (1.50)

Exercise: Apply Gauss’ theorem to a region in R3 with Ω = d3x = dx1∧dx2∧dx3.

1.7 Frobenius’ theorem

Definition 1.12 A (smooth) distribution of dimension k on a differential
manifold is a map

E : M→ {subspaces of TM} : p 7→ Ep ∈ {linear subspaces of TpM of dimension k}

such that Ep is a subspace of TpM of dimension k and in a neighborhood V of every
point p ∈M there exist smooth vector fields X1, · · ·Xk such that X1(q), · · ·Xk(q)
form a basis of Eq for all q ∈ V .
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Definition 1.13 A k-dimensional submanifold N ⊂M is called an integral mani-
fold of E if Eq = TqN for all q ∈ N. (For notational simplicity we omit the
inclusion map and simply consider TqN ⊂ TqM.)
A distribution E is called integrable if through each point p ∈ M there passes a
submanifold N with p ∈ N such that Eq = TqN, ∀q ∈ N.

We want to study under which circumstances a distribution is integrable. Be X
and Y vector fields on M such that Xp, Yp ∈ Ep for all p ∈ M. In this case
we say X, Y belong to E. If E is integrable, then clearly also the commutator,
[X, Y ] needs to belong to E, since X and Y are vector fields on a submanifold N.
Frobenius’ theorem states that also the converse is true, at least locally.

Definition 1.14 A distribution is called involutive if for each pair of vector fields
X and Y which belong to E also the commutator [X, Y ] belongs to E.

Theorem 1.5 (Frobenius’ Theorem (first version))
Let E be a smooth k-dimensional distribution on M which is involutive. Then E
is (locally) integrable.
More precisely the following holds: For each point p ∈ M there exists a coordi-
nate system {x1, ..., xm} in a neighborhood U of p with xi(p) = 0 and an ε > 0,
such that for each (ak+1, · · · am) with all aj ∈ (−ε, ε) the points {q ∈ U |xk+1(q) =
ak+1, . . . , xm(q) = am} form an integral manifold of E. Furthermore, every con-
nected integral manifold of E restricted to U is contained in one of these sets.

In such a coordinate system the integral manifolds of E are just the subsets of U
with coordinates xk+1 to xm fixed.

We postpone the proof of this important theorem and first reformulate it in a more
useful manner in terms of differential forms. For this we need to introduce some
concepts.

To each k-dimensional distribution E we associate the set I(E) ⊂ Λ(M) of differ-
ential forms ω with the property that each homogeneous component ω` ∈ Λ`(M)
of ω, ω =

∑m
`=0 ω

`, annihilates the sets (X1, ..., X`) of vector fields belonging to
E: ω`(X1, ..., X`) = 0 for all sets vector fields belonging to E.

The set I(E) is called the annihilator of E. Clearly, I(E) is an ideal of the algebra
Λ(M). (This means it is a sub-algebra of Λ(M) such that for each ω ∈ I(E) and
θ ∈ Λ(M) also ω ∧ θ ∈ I(M).) Locally, the ideal I(E) is generated by m − k
independent 1-forms ωk+1, . . . , ωm.

In the general case we complete the linearly independent vector fieldsX1, ..., Xk to a
basis X1, ..., Xm and consider the dual basis ω1, . . . ωm. By definition ωβ(Xα) = δβα
hence the ωk+1, . . . ωm annihilate E.
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We now consider an `-form ω ∈ I(E) expanded with respect to the basis ω1, . . . , ωm,

ω =
∑

i1<i2<···i`

ci1···i`ω
i1 ∧ · · · ∧ ωi` .

If it contains one (non-vanishing) term ci1···i`ω
i1 ∧ · · · ∧ ωi` which does not include

any ij > k, then ω(Xi1 , · · ·Xi`) 6= 0 which contradicts ω 6= I(E). This proves the
following:

Proposition 1.17 Let I(E) be the ideal of Λ(M) belonging to the k-dimensional
distribution E. Then I(E) is locally generated by m − k linearly independent 1-
forms: For each point of M there is a neighborhood U and m−k pointwise linearly
independent 1-forms ωk+1, . . . , ωm ∈ Λ1(U) such that each ω ∈ I(E)

ω|U =
m∑

i=k+1

θi ∧ ωi

for some θi ∈ Λ(U).

Now we can reformulate the condition in the Frobenius theorem.

Proposition 1.18 A distribution E on M is involutive if and only if I(E) is a
differential ideal, i.e. dI(E) ⊂ I(E). (For ω ∈ I(E) also dω ∈ I(E).)

Proof: We use the same notation as above. It is easy to see that E is involutive
if and only if there exist smooth functions C`

ij such that

[Xi, Xj] =
k∑
`=1

C`
ijX` for i, j = 1, . . . , k .

Now we have, see (1.13)

dωα(Xj, Xj) = Xiω
α(Xj)−Xjω

α(Xi)− ωα([Xi, Xj]) .

For i, j ≤ k and α > k the first two terms on the right vanish. So dωα(Xi, Xj) = 0
if and only if ωα([Xi, Xj]) = 0. But the latter equation holds for all i, j if and
only if each [Xi, Xj] belongs to E (i.e., if E is involutive), while dωα(Xi, Xj) = 0
holds exactly when dωα ∈ I(E). 2

Next we establish some equivalent conditions which all assure that a locally (finitely)
generated ideal is a differential ideal.
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Proposition 1.19 Let I be an ideal of Λ(M) locally generated by m − k linearly
independent 1-forms ωk+1, . . . , ωm ∈ Λ1(U). Furthermore let us denote by ω the
m−k-form ω ≡ ωk+1∧ · · ·∧ωm, ω ∈ Λm−k(U). Then the following statements are
equivalent:

(i) I is an differential ideal

(ii) dωβ =
∑m

α=k+1 ω
β
α ∧ ωα for some 1-forms ωβα ∈ Λ1(U),

∀ β ∈ {k + 1, . . . ,m}.

(iii) ω ∧ dωα = 0 ∀ α ∈ {k + 1, . . . ,m}.

(iv) There exists θ ∈ Λ1(U) such that dω = θ ∧ ω.

Proof: The equivalence of (i) and (ii) as well as the implication (i)⇒ (iii) follow
immediately from the definitions. The same is true for the implication (ii)⇒ (iv).
For the proof of (iv) ⇒ (iii) note that the condition (iv) means that

m∑
α=k+1

(−1)α−k+1dωα ∧ ωk+1 ∧ · · · ∧ ωα

∧

∧ · · · ∧ ωm = θ ∧ ωk+1 ∧ · · · ∧ ωm .

Multiplying this equation with ωα the right hand side vanishes while on the left
hand side only the term with ωα

∧

survives and is proportional to ω∧dωα, hence we
obtain (iii). It remains to show that (iii) ⇒ (ii): Again, let ω1, . . . , ωm be a basis
of Λ1(U) such that ωk+1, . . . , ωm generate I over U . Then

dωi =
∑
`<j

f i`jω
` ∧ ωj , (1.51)

where f i`j ∈ F(U). But

0 = dωα ∧ ω =
∑

1≤`<j≤m

fα`jω
` ∧ ωj ∧ ωk+1 ∧ · · · ∧ ωm .

Hence fα`j = 0 for α ∈ {k+1, . . . ,m} and 1 ≤ `, j ≤ k. Therefore the sum in (1.51)
is of the form given in (ii). 2

The preceding results can be expressed in the following version of the Frobenius
theorem.

Theorem 1.6 (Frobenius’ Theorem (second version)) LetM be an m-dimensional
manifold, E a k-dimensional distribution on M and I(E) the associated ideal. The
following statements are all equivalent:

(i) E is integrable.
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(ii) E is involutive.

(iii) I(E) is a differential ideal locally generated by m − k linearly independent
1-forms ωk+1, . . . , ωm ∈ Λ1(U).

(iv) For every point in M there exists a neighborhood U and ωk+1, . . . ωm generat-
ing I(E) such that dωβ =

∑m
α=k+1 ω

β
α ∧ ωα for some 1-forms ωβα ∈ Λ1(U),

∀ β ∈ {k + 1, . . . ,m}.

(v) dωα ∧ ωk+1 ∧ · · · ∧ ωm = 0 for k + 1 ≤ α ≤ m.

(vi) There exists a θ ∈ Λ1(U) such that dω = θ ∧ ω for ω = ωk+1 ∧ · · · ∧ ωm.

What remains to be shown here is that a involutive distribution is integrable, or,
equivalently, that an arbitrary of the above points (ii) to (vi) implies (i).

1.7.1 Applications

Consider first a single timelike vector field X on a 4-dimensional Lorentz manifold
(M, g). The orthogonal complement of X⊥(p) in every point Tp(M) defines a 3-
dimensional distribution E. Obviously, X is hypersurface orthogonal if and only
if E is integrable. Since X[ generates the ideal I(E) for this case, the Frobenius
theorem tells us that E is integrable if and only if

X[ ∧ dX[ = 0 . (1.52)

(We have used the equivalence of (i) and (v).) This shows that (1.52) is necessary
and sufficient for X to be locally hypersurface orthogonal.

Exercise: Using (1.52), show that for M = R3 a vector field X is hypersurface
orthogonal if and only if rotX = 0.

Our main application in GR will be the introduction of adapted coordinates if there
are several Killing fields on (M, g), in particular, if there exist two commuting
Killing fields. Let us, first introduce adapted coordinates for the more general
situation of a k-dimensional distribution E. Let us consider a neighborhood U
on which E is simply the span of k vector fields {X1, . . . , Xk}, i.e. at each point
p ∈ U the vectors {X1(p), . . . , Xk(p)} form a basis of Ep ⊂ TpM. Let ωk+1, . . . ωm
denote the m−k one forms which generate the ideal I(E). In the remainder of this
paragraph we use the following notation: Indices running from 1, 2, . . . , m are
denoted by Greek letters; for the first k numbers we use lower case Latin letters,
while for indices with values k + 1, . . . , m capital Latin letters will be used.
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Assume that E is involutive and use adapted coordinates {xµ} as in the first
version of the Frobenius theorem. The (local) integral manifolds are then given by
{xA = const}. For the basis of vector fields Xa belonging to E we have

Xa = Xb
a∂b , XA

a = 0 . (1.53)

Since ωA(Xa) = 0 we have

ωA = ωABdx
B ωAb = 0 . (1.54)

Clearly, the matrices Xb
a and ωAB are non-singular.

Let us first mention the special case when the vector fields Xa commute. In this
case also their flows, φas , commute and in the neighborhood of a point p0 we can
choose the coordinates (s1, . . . , sk) for the point

x = φ1
s1 · · ·φksk(p0)

In these coordinates the vector fields Xa become simply partial derivatives,

Xa =
∂

∂sa
. (1.55)

We now assume thatM is equipped with a (pseudo-)Riemannian metric g. We can
then also introduce the 1-forms ωa = X[

a. These generate the ideal of a distribution
E⊥. Let E⊥ be spanned by vector fields XA, such that

ωa(XA) ≡ g(Xa, XA) = 0 hence E ⊥ E⊥ . (1.56)

In what follows we assume that the restrictions g|E and g|E⊥ are non-singular (This
is always the case for a Riemannian metric but not for a pseudo-Riemannian one!).
In this case E ∩ E⊥ = {0} and

TpM = Ep ⊕ E⊥p .

Hence the vector fields Xa, XA form a basis of TpM and of all TqM in a neighbor-
hood of x. Correspondingly

T ∗pM = span{ωap} ⊕ span{ωAp } .

Here the span of several 1-forms is the vector space generated by them. Again this
construction can be extended to a neighborhood of p. The vector fields XA can be
chosen such that X[

A = ωA since both sets of vectors span the same vector space
E⊥.

We then have constructed a basis of vector fields {Xµ} and a basis of 1-forms
{ωµ = X[

µ} such that the forms {ωA} generate the ideal I(E) and the forms {ωa}
generate I(E⊥).
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Let us now assume that E and E⊥ are both involutive. We use coordinates {uµ}
which are adapted to E and also coordinates {vµ} that are adapted to E⊥. This
means that the vector fields ∂ua span E while the vector fields ∂vA) span E⊥. Then
we have according to (1.53) and (1.54)

Xau
A = 0 ωA = ωABdu

B

XAv
a = 0 ωa = ωabdv

b .

We now define the coordinates {xµ} as

xa = va xA = uA . (1.57)

To show that these indeed form a good coordinate system we show that the dxµ

are linearly independent. Suppose there would be a linear relation

fadx
a + gAdx

A = 0 , i.e. fadv
a + gAdu

A = 0 .

Applying this 1-form on Xc gives

fadv
a(Xc) = −gAduA(Xc) = gAXcu

A = 0 .

Since the dva are linearly independent it follows either fa = 0 or dva(Xc) = 0 and
since the dva span the ωb also ωb(Xc) = 0. Hence Xc ∈ E ∩ E⊥ = {0}. Hence
we must request fa = 0. Similarly by applying the identity to XB we can imply
gA = 0.

The coordinates {xµ} have the following properties

(i) Xa(x
A) = 0 , (1.58)

(ii) gaA = 0 . (1.59)

The last property is obtained as follows: Set ωa = ωaµdx
µ. Then according to

(1.56) ωaA = 0. But ωa = X[
a hence

0 = ωaA = Xb
agbA .

Since Xb
a is an invertible matrix this implies (ii). Summarizing we arrive at the

following result:

Proposition 1.20 Consider a (pseudo-)Riemannian manifold M of dimension m
and an involutive distribution E of dimension k spanned locally by the vector fields
{X1, . . . , Xk}. Consider the ideal I spanned by the 1-forms ωi = X[

i . We assume
also that I is differential. The distribution E⊥ with I = I(E⊥) is spanned by the
vectors normal to E. We assume in addition, that E∩E⊥ = {0} (for Riemannian
manifolds this is always true). Then we can introduce local coordinates {xµ} such
that

Xa(x
A) = 0 and gaA = 0 . (1.60)
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Next we assume that the vector fields {X1, . . . , Xk} are Killing fields of the metric
g. Hence

0 = (LXag)µν = Xb
agµν,b +Xb

a,µgbν +Xb
a,νgµb (1.61)

Applying this to µν = AB and using (1.59) and (1.58) we obtain

gAB,b = 0 . (1.62)

Hence the metric coefficients gAB depend only on the xC . Applying Eq. (1.61) on
µν = Ac we find

Xb
a,A = 0 , (1.63)

i.e. the components of the vector fields Xa depend only on the xc. Summarizing,
we have the useful result

Proposition 1.21 If in addition to the assumptions of the Proposition 1.20 it is
assumed that the Xa are Killing fields of the (pseudo-)Riemannian manifold (M, g),
then there are local coordinates {xµ} such that (in the notation introduced above)

ds2 = gab(x
µ)dxadxb + gAB(xC)dxAdxB

Xa = Xb
a(x

c)∂b .

Note, as a result of this, that the metric gabdx
adxb on the integral manifolds

{xA = const} has k Killing fields Xa, hence these submanifolds are homogeneous
spaces. Finally, we consider the important special case of commuting Killing fields,
[Xa, Xb] = 0. We can then choose the adapted coordinates such that Xa = ∂a, see
(1.55). If we use this in (1.61) for µν = cd, we obtain gcd,b = 0, hence also the
metric components gab depend only on the xC and on the integral submanifolds
the metric is constant. Hence these are not only homogeneous spaces but simply
flat space. The above equations then simplify to

ds2 = gab(x
C)dxadxb + gAB(xC)dxAdxB

Xa = ∂a .

We shall use this expressions as a staring point to derive the Kerr solution.

1.7.2 Proof of Frobenuis’ theorem

We finally proof the first version of the theorem.

Since the theorem is local we can work in Rm and set p = 0. Moreover, we can
assume that E0 ⊂ T0Rm is spanned by the basis vectors ∂/∂s1, . . . , ∂/∂sk at p = 0,
where (s1, . . . , sm) are standard coordinates on Rm. We denote by

Π : Rm → Rk : (s1, . . . , sm) 7→ (s1, . . . , sk)
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the projection on the first k components of a point in Rm. The corresponding
tangent map TΠ maps E0 isomorphically to T0Rk. By continuity TΠ is bijective
in a neighborhood of p = 0. Hence near p = 0 we can choose unique vector fields
Xa(q) ∈ Eq such that

TΠXa =
∂

∂sa
∀ 1 ≤ a ≤ k , q ∈ U ⊂ Rm (1.64)

where U is a neighborhood of 0. The vector fields Xa are Π-related and so is their
commutator,

TΠ[Xa, Xb] = [TΠXa, TΠXb] = [
∂

∂sa
,
∂

∂sb
] = 0 . (1.65)

Therefore we can introduce coordinates uµ such that

Xa =
∂

∂ua
∀ 1 ≤ a ≤ k .

The sets {q ∈ U |uk+1 = ak+1, . . . , um = am} are then obviously integral manifolds
of E since their tangent space is spanned by the ∂/∂ua, 1 ≤ a ≤ k. Conversely, if
N is a connected integral manifold restricted to U , with the inclusion ι : N→ U ,
then we have for uα ◦ ι, k < α ≤ m, and X(q) ∈ TqN,

d(uα ◦ ι)X = X(uα ◦ ι) = TιXuα = 0

since TιX ∈ Eq which is spanned by the ∂a with a ≤ k. This implies that uα ◦ ι is
constant on the connected manifold N. 2



Chapter 2

Cartan’s formalism of GR

2.1 Cartan’s structure equations

Let me first repeat the definitions of connection, torsion, curvature on a differen-
tiable manifold M (assuming you have heard them previously).

Definition 2.1 (Connection, torsion, curvature)

• A connection is a map ∇ : χ(M) × χ(M) → χ(M) : (X, Y ) 7→ ∇XY with
the following properties

– ∇ is F(M)-linear in X, i.e. ∇fXY = f∇XY for f ∈ F(M).

– ∇ is R-linear in Y .

– (Leibnitz rule) For f ∈ F(M), ∇X(fY ) = X(f)Y + f∇XY .

• The torsion of a connection ∇ is the following map,

T : : χ(M)×χ(M)→ χ(M) : (X, Y ) 7→ T (X, Y ) = ∇XY −∇YX − [X, Y ]

• The curvature of a connection ∇ is the following map,

R : χ(M)× χ(M)× χ(M)→ χ(M) : (X, Y,W ) 7→ R(X, Y )W

R(X, Y )W = ∇X∇YW −∇X∇YW −∇[X,Y ]W .

Note that both, the torsion and the curvature are F(M)-linear in X and Y and
the curvature is also F(M)-linear in W . (Show this!)

To introduce the Cartan formalism, we now define 1-forms which fully describe the
connection.

33
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Definition 2.2 (Connection 1-forms) Be ∇ an affine connection on M and be
(e1, . . . , en) a basis of vector fields on an open set U ⊂M. Be (θ1, . . . , θn) the dual
basis of 1-forms determined by θi(ej) = δij. We define the connection 1-forms
ωij ∈ Λ1(U) by

∇Xej = ωij(X)ei. (2.1)

We also define the Christoffel symbols with respect to the basis {ei} by

∇ekej = Γikjei = ωij(ek)ei. (2.2)

With this we obtain
ωij = Γikjθ

k. (2.3)

Proposition 2.1 For a vector field X = X iei,

∇X = ei ⊗ (dX i + ωikX
k). (2.4)

For a 1-form α = αiθ
i,

∇α = θi ⊗ (dαi − ωkiαk). (2.5)

Proof: Note that for a vector field X, the covariant derivative ∇X is defined
by ∇X(Y ) = ∇YX. Then eq. (2.4) follows from (2.1) and the Leibniz rule. For
(2.5), we use that ∇X commutes with contractions:

0 = ∇X(θi(ej)) = (∇Xθ
i)(ej) + θi(∇Xej).

Therefore
(∇Xθ

i)(ej) = −ωij(X),

so that
∇Xθ

i = −ωij(X)θj. (2.6)

With this and the Leibniz rule, equation (2.5) follows. 2

Definition 2.3 (torsion and curvature 2-forms) Since the torsion T (X, Y ) and
the curvature R(X, Y )Z are anti-symmetric in X and Y , we can define torsion
and curvature 2-forms Θi and Ωi

j by

T (X, Y ) = Θi(X, Y )ei (2.7)

R(X, Y )ej = Ωi
j(X, Y )ei. (2.8)

Theorem 2.1 The torsion and curvature 2-forms satisfy the structure equa-
tions of Cartan:

dθi + ωij ∧ θj = Θi (2.9)

dωij + ωik ∧ ωkj = Ωi
j (2.10)
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Proof: For (2.9):

Θi(X, Y )ei = ∇XY −∇YX − [X, Y ] = ∇X(θi(Y )ei)−∇Y (θi(X)ei)− θi([X, Y ])ei

=
{
X(θi(Y ))− Y (θi(X))− θi([X, Y ])

}
ei + θi(Y )ωji(X)ej − θi(X)ωji(Y )ej

= (dθi + ωil ∧ θl)(X, Y )ei.

For the last equal sign we use (1.13 ) and the definition of ∧.
And for (2.10):

Ωi
j(X, Y )ei = ∇X∇Y ej −∇Y∇Xej −∇[X,Y ]ej

= ∇X(ωij(Y )ei)−∇Y (ωij(X)ei)− ωij([X, Y ])ei

=
{
X(ωij(Y ))− Y (ωij(X))− ωij([X, Y ])

}
ei + {ωij(Y )ωki(X)− ωij(X)ωki(Y )}ek

= (dωij + ωil ∧ ωlj)(X, Y )ei .

2

Setting Ri
jkl = θi(R(ek, el)ej) = Ωi

j(ek, el), we obtain

Ωi
j =

1

2
Ri
jklθ

k ∧ θl. (2.11)

Equivalently, with T ikl = θi(T (ek, el)) we have

Θi =
1

2
T iklθ

k ∧ θl . (2.12)

Proposition 2.2 A connection on a (pseudo-)Riemannian manifold (M, g) is met-
ric if and only if

dgik = ωik + ωki (2.13)

where ωik := gilω
l
k; gij = g(ei, ej).

Proof: By definition the connection∇ is metric if (∇Xg)ik = X(gik)−g(∇Xei, ek)−
g(ei,∇Xek) = 0 for all vector fields X.Therefore, for a metric connection

dgik(X) ≡ X(gik) = g(∇Xei, ek) + g(ei,∇Xek) = g(ωji(X)ej, ek) + g(ei, ω
j
k(X)ej)

= ωji(X)gjk + ωjk(X)gij = ωki(X) + ωik(X) .

2

For the Riemannian connection (or Levi-Civita connection) we therefore obtain
the following equations:

ωij + ωji = dgij (2.14)

dθi + ωij ∧ θj = 0 (2.15)

dωij + ωik ∧ ωkj = Ωi
j =

1

2
Ri
jklθ

k ∧ θl. (2.16)

These are the Cartan structure equation for a Riemannian connection.
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2.2 The formal solution of Cartan’s structure equa-

tions for a Riemannian (or Levi-Civita) con-

nection

Be (ei)
n
i=1 and (θi)ni=1 local dual bases of vector fields and 1-forms with θi(ej) = δij,

and gij = g(ei, ej). For an orthonormal basis, gij = ±δij.
We expand dθi:

dθi = −1

2
Ci
jlθ

j ∧ θl Ci
jl = −Ci

lj . (2.17)

(Note that in a coordinate basis, also called a holonomic basis, θi = dxi the
coefficients Ci

jk vanish.) The choice of the basis (θi) determines the Ci
jk and the

metric components gij since g = gijθ
iθj (here θiθj = 1

2
(θi ⊗ θj + θj ⊗ θi)). We now

compute the connection 1-forms, ωij and the curvature 2-forms Ωi
j from the Ci

jl

and the metric components gij. For a holonomic basis, i.e., a basis of the form
θi = dxi, we have Ci

kl ≡ 0, while for an orthonormal basis dgij = 0.
With (2.3) and (2.15) (the first structure equation of Cartan) this yields(

−1

2
Ci
jl + Γijl

)
θj ∧ θl = 0,

so that
Γijl − Γilj = Ci

jl (2.18)

For a holonomic basis, the Γijk are symmetric.
We now define for an arbitrary basis

gij,k := ek(gij),

so that dgij = gij,kθ
k. Since ωij = gilΓ

l
kjθ

k, (2.14) gives for an arbitrary basis

gilΓ
l
kj + gjlΓ

l
ki = gij,k.

(For a orthonormal basis, the Γikj := gilΓ
l
kj are therefore antisymmetric in ij. )

With cyclic permutation we obtain

gki,j = gklΓ
l
ji + gilΓ

l
jk

gjk,i = gjlΓ
l
ik + gklΓ

l
ij

With eq. (2.18) this leads to

(gij,k + gkj,i − gki,j) = gklC
l
ij + gilC

l
kj + gjl(Γ

l
ki + Γlik)

Multiplication with gmj gives

Γmki + Γmik = gmj(gij,k + gkj,i − gik,j)− gmjgklC l
ij − gmjgilC l

kj .
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With (2.18) we find

Γmki =
1

2
gmj(gjk,i + gji,k − gik,j) +

1

2
(Cm

ki − gmjgliC l
kj − gmjgklC l

ij). (2.19)

For a holonomic basis (θi = dxi), only the first part of (2.19) is non-vanishing and
we find the well known standard expression for the Christoffel symbols.
For an orthonormal basis only the second part is non-vanishing and1

Γmki =
1

2
(Cm

ki − εmεiCi
km − εmεkCk

im) .

To solve the second structure eqn. (2.16), we proceed as follows: According to
(2.3),

dωij = dΓikj ∧ θk + Γikjdθ
k

dΓikj = el(Γ
i
kj)θ

l =: Γikj,lθ
l

dωij = Γikj,lθ
l ∧ θk − 1

2
ΓikjC

k
lmθ

l ∧ θm

dωij =
1

2

(
Γikj,l − Γilj,k − ΓimjC

m
lk

)
θl ∧ θk .

So that

Ωi
j = dωij + ωim ∧ ωmj =

[
1

2
(Γikj,l − Γilj,k − ΓimjC

m
lk ) + ΓilmΓmkj

]
θl ∧ θk

=
1

2
Ri
jlkθ

l ∧ θk .

Hence

Ri
jlk = Γikj,l − Γilj,k − ΓimjC

m
lk + ΓilmΓmkj − ΓikmΓmlj . (2.20)

Proposition 2.3 2.3 The Bianchi identities

The torsion and curvature forms satisfy the Bianchi identities,

DΘi ≡ dΘi + ωil ∧Θl = Ωi
j ∧ θj , (2.21)

DΩi
j ≡ dΩi

j + ωil ∧ Ωl
j − ωlj ∧ Ωi

l = 0 . (2.22)

1εm = gmm = ±1
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Here D denotes the total exterior derivative. For an tensor valued p form with
s covariant tensor indices and r contravariant indices we define the tensor values
p+ 1 form

DSm1···mr
i1···is = dSm1···mr

i1···is − Sm1···mr
j···is ∧ ωj i1 − · · · − Sm1···mr

i1···j ∧ ωj is
+Sn···mri1···is ∧ ω

m1
n + · · ·+ Sm1···n

i1···is ∧ ω
mr

n . (2.23)

Proof: Of (2.21):

dΘi + ωil ∧Θl = d(dθi + ωij ∧ θj) + ωij ∧ dθj + ωil ∧ ωlj ∧ θj

= dωij ∧ θj + ωil ∧ ωlj ∧ θj = Ωi
j ∧ θj .

Of (2.22):

dΩi
j+ω

i
l∧Ωl

j−ωlj∧Ωi
l = d(dωij+ω

i
k∧ωkj)+ωil∧(dωlj+ω

l
k∧ωkj)−ωlj∧(dωil+ω

i
k∧ωkl)

= dωil ∧ωlj −ωil ∧ dωlj +ωil ∧ dωlj +ωil ∧ωlk ∧ωkj −ωlj ∧ dωil−ωlj ∧ωik ∧ωkl = 0 .

2

Exercise: Show that in a holonomic basis, ei = ∂i, θ
i = dxi, the Bianchi identities

(2.21) et (2.22) are equivalent to the Bianchi identities in a coordinate basis given
by:

First Bianchi identity:∑
cyclic

jkl

Ri
jkl =

∑
cyclic

[
T imjT

m
kl + T ijk;l

]
.

2nd Bianchi identity:

0 =
∑

cyclic(mli)

[
Rj
kml;i +Rj

knmT
n
li

]
.

The fact that with Cartan’s formalism the Bianchi identities are nearly trivial
shows how well this formalism is adapted to differential geometry.

For an arbitrary function we can define the m-form ∗f = fη. In terms of forms
the integral of the function f is the integral of this m-form. The Einstein-Hilbert
action is therefore

SEH =
1

16πG

∫
∗R . (2.24)

We now show the following
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Proposition 2.4 The Einstein Hilbert action∫
∗R ≡

∫
Rη ≡

∫
R
√
|g|dx0 ∧ dx1 ∧ dx2 ∧ dx3

can be given as
∫

Ωµν ∧ ∗(θµ ∧ θν), where Ωµ
ν is the curvature 2-form. More

precisely,

∗R = Ωµν ∧ ∗(θµ ∧ θν) . (2.25)

Proof: We introduce

ηµν = ∗(θµ ∧ θν) =
1

2
ηαβσρg

αµgβνθσ ∧ θρ (2.26)

and ηαβ = 1
2
ηαβσρθ

σ ∧ θρ so that

ηµν ∧ Ωµν = ηαβ ∧ Ωαβ =
1

2
ηαβ ∧Rαβ

µνθ
µ ∧ θν . (2.27)

But

ηαβ ∧ θµ ∧ θν =
1

2
ηαβσρθ

σ ∧ θρ ∧ θµ ∧ θν = (δµαδ
ν
β − δναδ

µ
β)η (2.28)

and

ηµν ∧ Ωµν =
1

2
(δµαδ

ν
β − δναδ

µ
β)Rαβ

µνη = Rη = ∗R . (2.29)

2

Varying the action
∫

Ωµν∧∗(θµ∧θν) one obtains Einstein’s equation in the Cartan
formalism.

2.4 Application: An exact gravitational plane

wave solution

Proposition 2.5 The metric

ds2 = −dt2 + dr2 −H(t− r, x1, x2)(dt− dr)2 + δabdx
adxb , (2.30)

with ∆H ≡ δab∂a∂bH = 0 a, b ∈ {1, 2} (2.31)

is an exact solution of the vacuum Einstein equation.

This is an exact gravitational plane wave in the so called Brinkmann form [6].
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Proof:
An orthonormal set of tetrads of this metric are

θt = dt+
1

2
H(dt− dr) (2.32)

θr = dr +
1

2
H(dt− dr) (2.33)

θa = dxa a ∈ {1, 2} . (2.34)

It is easy to verify that

ds2 = −(θt)2 + (θr)2 + δabθ
aθb . (2.35)

As the metric coefficients are constant, ωµν = −ωνµ. The Cartan connection 1-
forms can then be inferred from 0 = Θν = dθν + ωνµ ∧ θµ,

dθt =
1

2
∂aHdx

a ∧ (dt− dr) =
1

2
∂aHθ

a ∧ (θt − θr) = −ωtµ ∧ θµ (2.36)

dθr =
1

2
∂aHθ

a ∧ (θt − θr) = −ωrµ ∧ θµ (2.37)

dθa = 0 = ωaµ ∧ θµ ⇒ (2.38)

ωta =
1

2
∂aH(θt − θr) = ωra . (2.39)

For the last equality sign we used the anti-symmetry.

From this we can easily calculate the curvature. Since all non-vanishing connection
forms are proportional to θt − θr there are no contributions of the form ωµν ∧ ωνλ
and we just have

Ωt
a = Ωr

a = dωta =
1

2
∂a∂bHθb∧(θt−θr) =

1

2
Rt

aµνθ
µ∧θν =

1

2
Rr

aµνθ
µ∧θν . (2.40)

From this we can conclude

Rt
atb = −Rt

arb = Rr
atb = −Rr

arb =
1

2
∂a∂bH . (2.41)

All other components of the Riemann tensor are either determined by symmetry
or they vanish. For the Ricci tensor this yields

Rab = Rt
atb +Rr

arb = 0 (2.42)

Rtt = Ra
tat = −Rt

ata = −1

2
δab∂a∂bH = Rrr . (2.43)

Hence the Ricci tensor vanishes if and only if ∆H = 0. 2
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Figure 2.1: The two polarisation states of a gravitational plane wave in the plane
normal to its propagation.

A simple example of such an exact gravitational wave solution is H = 1
2
(x2 −

y2)f(t− r) with

(H,ab) = f(t− r)
(

1 0
0 −1

)
. (2.44)

This describes a gravitational wave which expands and contracts space along the
x1 and x2 directions (see figure 2.1 a). Contrary, for H = xyf(t− r),

(H,ab) = f(t− r)
(

0 1
1 0

)
, (2.45)

which describes a gravitational wave expanding and contracting space in principle
directions which are 45o rotated wrt. x1, x2 (see figure 2.1 b).

Interestingly, this form of the metric, which of course is also a linearized gravita-
tional wave on Minkowski spacetime, i.e. it satisfies the usual wave equation,(

−∂2
t + ∂2

r + ∂2
x1 + ∂2

x2

)
H = 0

is an exact solution of Einstein’s equation.

Exercice: Calculate the Ricci tensor of the metric (2.30) in the usual way, without
using the Cartan formalism.

Exercice: Use the Cartan formalism to derive the Schwarzschild solution.
Hint: Make the following ansatz for the metric:

ds2 = −e2a(r)dt2 + e2b(r)dr2 + r2(dϑ2 + sin2 ϑ dϕ2)

and use the tetrads

θ0 = eadt (2.46)

θ1 = ebdr (2.47)

θ2 = rdϑ (2.48)

θ3 = r sinϑ dϕ . (2.49)
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Chapter 3

The 3+1 or ADM formalism of
GR

(ADM stands for Arnowitt, Deser Misner.)
The 3+1 formulation of GR is important for theoretical developments (e.g. for-
mulations of quantum gravity or the Hamiltonian formulation of GR) but also for
numerical relativity. The 3+1 formalism is also very well adapted to cosmological
perturbation theory.

Here we give an introduction to the topic with some applications. We assume

Figure 3.1: The slicing of spacetime into hypersurfaces of constant time.

that the spacetime (M, g) (a pseudo-Riemannian manifold with metric signature

43
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(−,+,+,+)) admits a slicing by a 1-parameter family Σt of spacelike hypersurfaces,
see Fig. 3.1 left panel. (A 3 dimensional submanifold of spacetime is called spacelike
if at each point the normal to its tangent space is timelike.) More precisely, we
assume the existence of a diffeomorphism

φ : M→ I × Σ , I ⊂ R , (3.1)

where I is an interval, such that the manifolds Σt = φ−1({t} × Σ) are spacelike
and the curve φ−1(I×{p}) is timelike for all points p ∈ Σ. These curves are called
preferred timelike orbits. Their tangent vectors ∂t define a vector field on M. This
can be decomposed into a part normal to Σt and a vector in TΣt (see Fig. 3.2),

∂t = αn+ β̄ . (3.2)

Here n denotes the future directed normal to Σt, with n2 ≡ nµnνgµν = −1, α

Figure 3.2: The decomposition of ∂t into a component normal to Σt and a shift
vector β̄ in TΣt.

is the lapse function and β̄ is called the shift vector. Here and in what follows
we denote vectors on Σt with an overbar. A local coordinate system {xi} on Σ
introduces natural (comoving) coordinates on M when giving the point φ−1(t, p)
the coordinates (t, xi) where xi are the coordinates of the point p ∈ Σ. In these
coordinates β̄ = βi∂i. The metric g induces a metric ḡ on each Σt and we raise
and lower indices of tensors on Σt (like e.g. the vector β̄ with this metric. Using
also g(n, ∂i) = 0 we find

g(∂t, ∂t) = −(α2 − βiβi) and g(∂t, ∂i) = βi . (3.3)

In our comoving coordinates (t, xi) the metric then takes the form

ds2 = −(α2 − βiβi)dt2 + 2βidx
idt+ ḡijdx

idxj (3.4)

= −α2dt2 + ḡij(dx
i + βidt)(dxj + βjdt) . (3.5)
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As β̄ is a vector on Σ, its components are raised and lowered with ḡij. Eq (3.4)
gives

(gµν) =

(
−α2 + βiβi βi

βj ḡij

)
. (3.6)

Exercise: Show that the inverse metric is given by

(gµν) =

(
−α−2 α−2βi

α−2βj ḡij − α−2βiβj

)
. (3.7)

The form (3.5) of the metric shows that dt is orthogonal to the 1-forms dxi+βidt (in
the sense that the corresponding vector fields dt] and (dxi+βidt)] are orthogonal).

We call a tensor field S on M tangential (to the slicing Σt) if at each moment t it
can be considered as a tensor field on Σt. In terms of comoving coordinates this
means that S is of the form

S̄ = Si1···irj1···js

(
∂i1 ⊗ · · · ⊗ ∂ir ⊗ dxj1 ⊗ · · · ⊗ dxjs

)
. (3.8)

In other words, at each moment t S ’lives’ on TΣt and T ∗Σt. We shall denote such
tensor fields by an over bar. Our first example of a tangential tensor field is the
shift vector β̄. Let us now consider a tangential p-form ω̄ on M. In general its
exterior derivative dω̄ will no longer be tangential but of the form

dω̄ = d̄ω̄ + dt ∧ ∂tω̄ , (3.9)

where d̄ denotes the exterior derivative in Σt. Both d̄ω̄ and ∂tω̄ are tangential. In
coordinates, ∂tω̄ = (∂tωi1···ir)dx

i1 ∧ · · · ∧ dxir .

Exercise: Show that for two tangential vector fields [X̄, Ȳ ] = [̄X̄, Ȳ ]̄ and for a
tangential vector field X̄ on TΣt and a tangential tensor field S̄, the Lie derivative
on M is given by the Lie derivative on Σt, LX̄ S̄ = L̄X̄ S̄. In other words, the com-
mutator and the Lie derivative conserve the property of tangentiality (contrary to
the exterior derivative).

We also introduce the projection map which projects an arbitrary vector in TM
onto its part on TΣt,

hµν = δµν + nµnν . (3.10)

Besides the dual basis {∂µ} = {∂t, ∂i} and {dxµ} = {dt, dxi} adapted to the 3 + 1
split we shall also use the dual basis

{n, ∂i} {αdt, dxi + βidt} . (3.11)
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In order to use the Cartan formalism in our calculations it will be useful to replace
the coordinate basis ∂i by and orthornormal basis {ēi} on Σt. Denoting its dual
basis on Σt by {ϑ̄i} we then have the following two pairs of duals bases which we
shall use for what follows

{e0 ≡ n, ēi} , {θ0 = αdt, θi = ϑ̄i + βidt} and (3.12)

{∂t, ēi} , {dt, ϑ̄i} . (3.13)

Only the pair (3.12) is a dual pair of orthonormal bases on TM and T ∗M, while
for the pair (3.13) the spatial part forms an orthonormal basis on Σt. We shall
also often use

e0 = n =
1

α
(∂t − β̄) . (3.14)

In terms of the orthonormal basis (3.12), the components of the projection operator
becomes simply

hµν = δµi δ
j
νδ
i
j =

{
δij if µ, ν are spatial
0 if one index is 0 .

(3.15)

3.1 The formulas of Gauss and Weingarten

We now consider the first structure equation for the orthonormal frame (3.12),

dθµ + ωµν ∧ θν = 0 . (3.16)

Restricting this to TΣt and using θ0|TΣt = 0 we obtain (θ̄i ≡ ϑ̄i)

dθ̄i + ωij ∧ θ̄j = 0 on TΣt (3.17)

−dθ0 = −α,iθi ∧ dt = ω0
j ∧ θ̄j = 0 on TΣt . (3.18)

Here α,i ≡ ei(α). Since the connections forms ω̄ij on the hypersurface TΣt also
satisfy Eq. (3.17) and have the same symmetry properties we can conclude

ωij = ω̄ij on TΣt . (3.19)

This has the following simple geometrical interpretation: For a fixed t, we denote
by ∇ the Riemannian connection on (M, g) and by ∇̄ the one induced on (Σt, ḡ),

∇̄ = h∇ , ∇̄µ = hνµ∇ν in coordinates. (3.20)

For a vector field X̄ on TΣt, Eq. (3.19) is equivalent to

g(∇X̄ej, ei) = ωij(X̄) = ω̄ij(X̄) = ḡ(∇̄X̄ej, ei) (3.21)
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This shows that for X̄ ∈ χ(Σt) and Y ∈ χ(M) with tangential projection Ȳ ,
i.e. Y = Ȳ + y0e0, the tangential projection of ∇X̄Y on TΣt is equal to ∇̄X̄ Ȳ .
Eq. (3.18) determines the component of ∇X̄Y normal to TΣt. Note also that
ω0

j = −ω0j = ωj0 = ωj0. On TΣt these 1-forms vanish, hence they satisfy the
hypothesis of the following lemma:

Lemma 3.1 (Cartan). If α1, . . . , αn are linearly independent 1-forms on a mani-
fold M of dimension n′ ≥ n, and β1, . . . , βn are 1-forms on M satisfying

n∑
i=1

αi ∧ βi = 0 (3.22)

Then there are smooth functions fij on M such that

βi =
n∑
j=1

fijα
j and (3.23)

fij = fji . (3.24)

Proof: In a neighborhood of any point we can choose n′−n 1-forms αn+1, . . . , αn
′

such that they complete α1, . . . , αn to a basis of T ∗M. Then there are smooth
functions fij (1 ≤ i ≤ n and 1 ≤ j ≤ n′) with

βi =
n′∑
j=1

fijα
j (3.25)

The condition (3.22) then implies

0 =
n∑
i=1

n′∑
j=1

fijα
i ∧ αj

=
∑

1≤i<j≤n

(fij − fji)αi ∧ αj +
n∑
i=1

∑
j>n

fijα
i ∧ αj . (3.26)

Since the forms αi∧αj, (i < j) are linearly independent 2-forms we conclude that
fij = 0 for j > n and fij = fji for j ≤ n. 2

According to this lemma and Eq. (3.18) (the θ̄i play the role of the αi and the ω0
i)

the one of the βi) there are functions Kij on Σt such that

ω0
i = −Kij θ̄

j on TΣt with (3.27)

Kij = Kji . (3.28)
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The symmetric tensor field Kij on Σt is called the extrinsic curvature of Σt or
the second fundamental tensor (Often the expression ’second fundamental form’
is used as a complement to the ’first fundamental form’ which designs simply the
metric ḡ. In this course we use the expression ’form’ only to denote anti-symmetric
co-variant tensor fields.). We also want to express the extrinsic curvature in the
coordinate system (t, xi). For this we first note that

Kij = −ω0
i(ej) = −ωi0(ej) = −(∇jn)i = −hαj hiβ(∇αn)β . (3.29)

For the last equal sign we used that in our orthonormal frame hkj = δkj and h0
j =

0. Expression (3.29) also holds in an arbitrary coordinate basis where K may
have non-vanishing components also in direction ∂t and where the index positions
matter, so that in arbitrary coordinates or basis fields, where hµν = δµν + nµnν , we
have

Kµν = −hαµhνβ(∇αn)β = −hαµ(∇αn)ν = −(nν;µ + nµaν) . (3.30)

For the second equal sign we used that nβ∇αn
β = 0 which is a consequence of

the normalisation condition, n2 = −1. For the third equal sign we introduced the
’acceleration’ of the normal field n,

a = ∇nn . (3.31)

Hence (up to a sign) the extrinsic curvature is the projection of the covariant
derivative of the normal n onto the hypersurface Σt. Since symmetry of a tensor
field is invariant under coordinate transformation, also Kµν is symmetric even
though this is not evident from (3.30).

With this the 0-i first structure equations for our orthonormal basis eµ become

g(∇eiej, n) = g(∇eiej, e0) = −ω0
j(ei) = Kji = Kij = g(∇ejei, n) . (3.32)

The second fundamental tensor K(X̄, Ȳ ) ≡ KijX
iY j on TΣt determines the nor-

mal component of ∇X̄ Ȳ ,

∇X̄ Ȳ = ∇̄X̄ Ȳ −K(X̄, Ȳ )n . (3.33)

Here Ȳ , X̄ ∈ χ(M) are tangent to TΣt and n = e0. Eq. (3.33) is called the Gauss
formula and Eq. (3.32) are the Weingarten equations. We can write them for
X̄ = X iei and Ȳ = Y iei as

K(X̄, Ȳ ) = g(n,∇X̄ Ȳ ) = g(n,∇Ȳ X̄) = −g(∇X̄n, Ȳ ) = −g(∇Ȳ n, x̄) . (3.34)

The sign of the extrinsic curvature K is unfortunately not uniformly defined in the
literature.

The map
K : TΣt → TΣt : X iei 7→ Ki

jX
jei (3.35)
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is called the Weingarten map of the second fundamental tensor. Its eigenvalues
are called the principal curvatures.

Execercise. Consider a torus imbedded in R3 with the metric induced from the
flat metric on R3, i.e., ds2 = δijdx

idxj. Determine the first and second fundamental
tensor of the torus.

Execercise. Consider an ellipsoid with principle axes of lengths a, b and c imbed-
ded in R3 with the induced metric. Determine the first and second fundamental
tensor of the ellipsoid.
Hint: Such an ellipsoid is defined by the equation

f(x, y, z) =
(x
a

)2

+
(y
b

)2

+
(z
c

)2

= 1 , (3.36)

its normal is thus proportional to the gradient of f .

3.2 The Gauss and Codazzi-Mainardi equations

Before determining the parts of the connection forms ωµν which are not tangential
to TΣt, we want to relate the curvature forms Ωµ

ν onM on tangential vector fields
to the ones on Σt and to the second fundamental tensor. We first consider the
purely spatial components

Ωi
j = dωij + ωik ∧ ωkj + ωi0 ∧ ω0

j (3.37)

We want to evaluate this curvature form first for vectors on TΣt. Since ωij = ω̄ij,
the first two terms on TΣt (where we can replace d by d̄ ) simply give Ω̄i

j. Using
also (3.27) we find on TΣt

Ωi
j = Ω̄i

j +Ki
lKjmθ̄

l ∧ θ̄m on TΣt . (3.38)

For the 0-i components on TΣt we find

Ω0
j = dω0

j + ω0
k ∧ ωkj (3.39)

= −d(Kjiθ̄
i)−Kkiθ̄

i ∧ ω̄kj on TΣt , (3.40)

= −d̄Kji ∧ θ̄i +Kjiω̄
i
m ∧ θ̄m −Kkiθ̄

i ∧ ω̄kj on TΣt , (3.41)

= −∇̄Kji ∧ θ̄i on TΣt . (3.42)

Here ∇̄ denotes the covariant derivative on TΣt. The formulas (3.38) and (3.41) are
the famous equations of Gauss and Codazzi–Mainardi in terms of differential
forms. We want to write them also in terms of the curvature tensor. For this we
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consider tangential vector X̄ and Ȳ . The relation between the curvature form and
the Riemann tensor gives

g(R(X̄, Ȳ )ej, ei) = Ωij(X̄, Ȳ )

= Ω̄ij(X̄, Ȳ ) +Ki
lKjm(θ̄l ∧ θ̄m)(X̄, Ȳ )

= ḡ(R̄(X̄, Ȳ )ej, ei) +K(ei, X̄)K(ej, Ȳ )−K(ei, Ȳ )K(ej, X̄) .

(3.43)

For tangent vectors X̄, Ȳ , Z̄ and W̄ we therefore obtain

g(R(X̄, Ȳ )Z̄, W̄ ) = ḡ(R̄(X̄, Ȳ )Z̄, W̄ ) +K(W̄ , X̄)K(Z̄, Ȳ )−K(W̄ , Ȳ )K(Z̄, X̄) .

(3.44)

In components wrt the orthonormal spatial basis fields this reads

Ri
jlm = R̄i

jlm +Ki
lKjm −Ki

mKjl . (3.45)

One calls this relation often Gauss’ Theorema Egregium1. Due to the Minkowski
signature the signs involving the extrinsic curvature K are different from the Rie-
mannian case which is usually treated in the mathematics literature.

Similarly we obtain from (3.41)

g(R(X̄, Ȳ )ej, n) = Ω0j(X̄, Ȳ ) = (D̄Kji ∧ θ̄i)(X̄, Ȳ )

= ∇̄kKij(θ̄
k ∧ θ̄i)(X̄, Ȳ ) = (XkY i −X iY k)∇̄kKij

= (∇̄X̄K)(Ȳ , ej)− (∇̄ȲK)(X̄, ej) . (3.46)

Replacing ej by an arbitrary tangent vector field Z̄ = Zjej this yields

g(R(X̄, Ȳ )Z̄, n) = (∇̄X̄K)(Ȳ , Z̄)− (∇̄ȲK)(X̄, Z̄) . (3.47)

In components wrt the orthonormal basis fields, e0 ≡ n, this reads

R0
jlm = −[(∇̄lK)mj − (∇̄mK)lj] . (3.48)

Exercice: Show that for a static metric, i.e. a metric of the form

ds2 = −α2(x)dt2 + γij(x)dxidxj (3.49)

the extrinsic curvature vanishes. (We shall give a more mathematical definition of
’static’ and ’stationary’ in the next section.)

1For a n-dimensional surface imbedded in n + 1 dimensional flat space, the combination
Ki

lKjm −Ki
mKjl depends only on the intrinsic curvature tensor but not on the imbedding.
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3.3 The 3+1 form of Einstein’s equations

To derive the 3 + 1 split of Einstein’s equations we also need the normal parts of
the Riemann curvature, the components R0

i0j. We determine these later in Sec-
tion 3.3.2. First we want to explore what we can do already with the components
of the Riemann tensor derived so far, namely R0

iml and Ri
jlm.

3.3.1 The time components of the Einstein and Ricci ten-

sors

The basic equations of Gauss and Codazzi-Mainardi allow us to obtain interesting
and useful expressions for the components R0i = G0i and G00 of the Ricci and
Einstein tensors. We first note that in full generality

ieαΩα
β =

1

2
Rα

βµνieα(θµ ∧ θν) = Rβνθ
ν . (3.50)

The components of the Ricci tensor are therefore given by

ieν (ieαΩα
β) = Ωα

β(eα, eν) = Rβν . (3.51)

Especially for the 0-i components relative to our adapted orthonormal basis we
find

G0i = R0i = Ωj
0(ej, ei) = ∇̄iK

j
j − ∇̄jK

j
i . (3.52)

Note that this gives the 0i components of the Einstein tensor wrt our orthonormal
frame. We can also express this equations in coordinates using the G0i = nµeνiGµν ,
where the latter Gµν denotes the Einstein tensor in the coordinates (t, xi). Using
the projection operator for

∇̄i = hαi ∇α (3.53)

and Kj
j = Kµ

µ we obtain the following identity in coordinates

nµGµi = hαi
(
∇αK

ν
ν − hβν∇βK

ν
α

)
. (3.54)

This equation is valid in arbitrary coordinates as long as the xi are coordinates on
Σ, in other words, the ∂i are tangential.

Let us also consider, again in our orthonormal frame,

G00 = R00 −
1

2
g00R =

1

2
(R00 +Ri

i) .

R00 = Ωj
0(ej, e0)

Ri
i = Ωji(ej, ei) + Ω0i(e0, ei) .
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Hence

2G00 = Ωji(ej, ei) = R̄i
i +Ki

iK
j
j −Ki

jK
j
i , (3.55)

G00 =
1

2

(
R̄ + (trK)2 − tr(K2)

)
= nµnνGµν . (3.56)

The last equal sign is valid in arbitrary coordinates while the first expression
denotes G00 in our orthonormal frame.

Example 1: static and stationary spacetimes
Naively, a stationary spacetime is one where we can introduce coordinates such
that the metric coefficients do not depend on time, ∂tgµν = 0. Here we want to
translate this into a more geometric concept. For this we define

Definition 3.1 (stationary metric) The metric of a Lorentz manifold (M, g) is
called stationary if it admits a time-like Killing field, b.

We now construct a local coordinate system in which g is time-independent. For
this we consider in a neighborhood of a point p0 ∈ M a three dimensional hyper-
surface Σ that is not tangent to b, i.e. b(p) /∈ TpΣ for every p in a neighborhood of
p0.
Let x1(p), x2(p) and x3(p) be some coordinates on Σ and Φt := Φt,0 the flow of
b. For the point q = Φt(p) we choose the coordinates (t, x1(p), x2(p), x3(p)). With
this construction b = ∂t = ∂x0 and

Lbg = 0 is equivalent to gµν ,0 = 0 .

It may happen that a Killing field is time-like in a certain domain, space-like in
another one and light-like at the boundary (see black holes). In this sense the
definition of stationarity given here is a local one.

Definition 3.2 (static metric) A stationary metric is called static if the 1-form
b[ satisfies

b[ ∧ db[ = 0 . (3.57)

We want to show that in this case the surfaces Σ can be chosen such that b is
normal to Σ and thus gi0 = 0.
(This is indeed a consequence of Frobenius’ theorem: let us introduce the distri-
bution b(p)⊥ =: {Xp ∈ TpM | gp (Xp, b(p)) = 0}. If Eq. (3.57) is satisfied, the
distribution {b(p)⊥ | p ∈ M} is locally integrable, but in this elementary case we
show it without the use of Frobenius.). We first show that (3.57) implies that
locally

b[ = 〈b, b〉df (3.58)
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for some function f . Here we use 〈X, Y 〉 ≡ g(X, Y ) interchangably. The surfaces
{f = const} are then normal to b and hence in coordinates (x1, x2, x3) defined on
{f = const} together with df = dt the metric has no components g0idtdx

i. We
now prove the existence of the function f in (3.58). Since

0 = ib(b
[ ∧ db[) = 〈b, b〉db[ − b[ ∧ ibdb[

= 〈b, b〉db[ − b[ ∧ (Lbb
[ − d〈b, b〉)

But for an arbitrary vector field X(
Lbb

[
)

(X) = b(b[(X))− b[([b,X]) = b (g(b,X))− g(b, [b,X])− g([b, b], X) = 0 .

The last equation holds since b is a Killing field. With this we find

0 = 〈b, b〉db[ − d〈b, b〉 ∧ b[ = 〈b, b〉2d
(

b[

〈b, b〉

)
. (3.59)

Hence b[/〈b, b〉 is closed and according to Poincaré’s Lemma (3.58) holds locally.
Note that we have used that b is a Killing field, otherwise the result would not
hold. We therefore have

b[ = 〈b, b〉df =: 〈b, b〉dt

Conclusions: (for df ≡ dt):

• The flow Φt of b maps the hypersurfaces t = const in an isometric way.

• An observer at rest propagates along integral curves of b.

• If there exists a time-like Killing field satisfying Eq. (3.57), there exists a

preferred time t with dt = b[

〈b,b〉 .

• For Σ = {t = const}, the Lagrangian coordinates introduced for the station-
ary case lead, in the static situation, to a metric of the form

ds2 = g00(x)dt2 + gij(x)dxidxj = −α2(x)dt2 + ḡ(x) . (3.60)

On the hypersurface Σ we can introduce an orthonormal basis ēi of ḡ, which
together with e0 ≡ n = α−1∂t = (

√
−g00(x))−1∂t form an orthonormal basis of

spacetime with shift vector β̄ = 0. We denote the dual 1-forms by θ0 = α(x)dt
and θi = ϑi. The first structure equation gives

dθ0 = −ω0
i ∧ θi = α,iθ

0 ∧ θi (3.61)

dθi = −ωij ∧ θi − ωi0 ∧ θ0 = −ωij ∧ θi . (3.62)
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Here α,i ≡ ēi(α) which in general is not just a partial deriovative wrt to some
coodrinate xi, since the ēi are orthonormal vector fields. The above eqns. imply
ω0

i = −α,iθ0 and ω0
i vanishes on TΣ hence

K ≡ 0 for a static spacetime. (3.63)

For the Einstein tensor we conclude G0i = 0 and

G00 =
1

2
R̄ for a static spacetime. (3.64)

Example: The Friedmann spacetime
We consider a spatially flat (for simplicity) Friedmann universe with metric

ds2 = −dt2 + a2(t)δijdx
idxj . (3.65)

We choose the orthonormal basis adapted to the constant time hypersurfaces

e0 = ∂t , ei =
1

a
∂i ; θ0 = dt , θi = adxi (3.66)

The first structure equation yields

ddt = −ω0
i ∧ θi = 0 (3.67)

dθi = −ωij ∧ θj − ωi0 ∧ dt =
ȧ

a
dt ∧ θi (3.68)

Together with the antisymmetry of ωµν this implies ωij = 0 and

−ω0
i = −ωi0 = Kijθ

j =
ȧ

a
δijθ

j . (3.69)

In a Friedmann universe, the extrinsic curvature is diagonal and given by the
expansion rate, Kii = ȧ/a = H. For the components of the Einstein tensor this
implies

G0i = 0 and (3.70)

G00 =
1

2
(9H2 − 3H2) = 3H2 . (3.71)

3.3.2 The connections forms in the normal direction and

other useful relations

In the previous section we have calculated ωij(ēk) = ω̄ij(ēk) and ω0
j(ēk) = Kjk.

In terms of the orthonormal basis ϑ̄i on Σt we can write the extrinsic curvature,
which is a symmetric covariant 2-tensor field on Σt also as

K = Kij θ̄
i ⊗ θ̄j = K̄ = Kijϑ̄

i ⊗ ϑ̄j . (3.72)
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We also want to compute the connection forms in the direction n = e0 normal to
Σt. First we compute ω0

i(e0). The first structure equation yields

dθ0 = d(αdt) = α,jϑ
j ∧ dt =

1

α
α,jϑ

j ∧ θ0

=
1

α
α,jθ

j ∧ θ0 = −ω0
j ∧ θj .

For the second line we made use of Eq. (3.12). Hence ω0
i(e0) = α,i/α and with

(3.27)

ω0
i = −Kijθ

j +
1

α
α,iθ

0 . (3.73)

Finally we need to compute ωij(e0). The first structure equation gives

dθi = −ωi0 ∧ θ0 − ωij ∧ θj = −(Ki
jθ

0 + ωij) ∧ θj

Hence

−iej ie0dθi = Ki
j + ωij(e0) . (3.74)

On the other hand

dθi = d(ϑ̄i + βidt) = d̄ϑ̄i + dt ∧ ∂tϑ̄i + d̄βi ∧ dt .

With e0 = α−1(∂t − βiēi) and d̄ϑ̄i = −ω̄ij ∧ ϑ̄j we obtain

ie0dθ
i =

1

α

[
iβ̄
(
ω̄ij ∧ ϑ̄j

)
+ ∂tϑ̄

i − d̄βi + (· · ·)dt
]

and

iej(ie0dθ
i) =

1

α

[(
ω̄ik ∧ ϑ̄k

)
(β̄, ej) + ∂tϑ̄

i(ej)− d̄βi(ej)
]

=
1

α

[
ω̄ij(β̄)− βi|j + ∂tϑ̄

i(ej)
]
. (3.75)

Here the stroke in βi|j = βi,j +βkωik(ej) denotes the covariant derivative on (Σt, ḡ).
Let us define

∂tϑ̄
i = cijϑ̄

j . (3.76)

One easily derives from this that (exercise)

(∂tḡ)ij = cij + cji ,

hence for an orthonormal basis on Σt the coefficients cij are antisymmetric. We
then obtain from (3.75) and (3.74)

Kij + ωij(e0) = − 1

α

[
ω̄ij(β̄)− βi|j + cij

]
. (3.77)
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The symmetric and anti-symmetric parts of this relation determine Kij and ωij(e0):

ωij(e0) = − 1

α
ω̄ij(β̄) +

1

2α

[
βi|j − βj|i

]
− 1

2α
[cij − cji] (3.78)

Kij =
1

2α

[
βi|j + βj|i − (cij + cji)

]
. (3.79)

The last eqn. (3.79) provides a useful relation. Inserting (see prop. 1.15,
2β̄i|j = (L̄β̄ ḡ)ij)− (d̄β̄)ij)

(L̄β̄ ḡ)ij = β̄i|j + β̄j|i (3.80)

we obtain

K̄ = − 1

2α

[
∂tḡ − L̄β̄ ḡ

]
. (3.81)

For the curvature we shall also need the explicit expression for L̄β̄K̄,

L̄β̄K̄ = (L̄β̄K̄ij)ϑ̄
i ⊗ ϑ̄j + K̄ij(L̄β̄ϑ̄

i)⊗ ϑ̄j + K̄ijϑ̄
i ⊗ L̄β̄ϑ̄j

The Lie derivative of ϑ̄i on Σt is given by

L̄β̄ϑ̄
i = (d̄ ◦ iβ̄ + iβ̄d̄)ϑ̄i = d̄βi − iβ̄(ω̄ik ∧ ϑ̄k) = βi,kϑ

k + ω̄i kβ
k − ω̄ik(β̄)ϑ̄k

= (βi|k − ω̄i k(β̄))ϑ̄k .

Inserting this above we find

(L̄β̄K̄)ij = βkK̄ij,k +Kik(β
k
|j − ω̄k j(β̄)) +Kkj(β

k
|i − ω̄k i(β̄)) . (3.82)

We shall also need ∂tK̄. For this we use (3.76) so that

∂tK̄ = (∂tKij +Kikc
k
j +Kkjc

k
i)ϑ̄

i ⊗ ϑ̄j . (3.83)

Putting this together we have

(∂tK̄ − L̄β̄K̄)ij = (∂t − L̄β̄)Kij +
[
Kik

(
ckj − βk|j + ω̄k j(β̄)

)
+ (i↔ j)

]
. (3.84)

Using (3.77) this becomes

(∂tK̄ − L̄β̄K̄)ij = (∂t− L̄β̄)Kij − 2α(K̄2)ij −α
[
Kikω

k
j(e0) +Kkjω

k
i(e0)

]
. (3.85)

This formula will be useful for the derivation of the spatial components of the
Einstein tensor .
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3.3.3 The spatial components of the Einstein and Ricci

tensors

To derive also the spatial components of the Einstein tensor we need to determine
the curvature forms also in the normal direction n = e0. With the second structure
equation and (3.73,3.77) this can be obtained as follows

Ωi
0 = dωi0 + ωij ∧ ωj0

= −d(Ki
jθ
j) + d

(
α|i

α
θ0

)
+ ωij ∧

(
−Kj

kθ
k +

α|j

α
θ0

)
(3.86)

For the first term we obtain

−dKi
j ∧ θj +Ki

j(ω
j
k ∧ θk + ωj0 ∧ θ0) = −dKi

j ∧ θj +Ki
j(ω

j
k ∧ θk −Kj

kθ
k ∧ θ0) .

We also need
α|j

α
ωij ∧ θ0 =

α|j

α
ω̄ij(ēk)θ

k ∧ θ0 ,

and

d

(
α|i

α
θ0

)
= d

(
α,idt

)
= α,i,jθ

j ∧ dt

=
1

α
α,i,jθ

j ∧ θ0 .

We have used that θ0 = αdt. Also note that for functions α,j = ej(α) = α|j.

The second and the last term in (3.86) therefore give together 1
α
α
|i
|jθ

j ∧ θ0. In total
we obtain for the curvature form

Ωi
0 =

1

α
α
|i
|jθ

j ∧ θ0 − dKi
j ∧ θj + (Ki

jω
j
k −Kj

kω
i
j) ∧ θk −Ki

jK
j
kθ
k ∧ θ0 . (3.87)

As a check one can restrict this to TΣt to obtain the Codazzi-Mainardi eqn. (3.41).

The Ricci tensor is obtained from the curvature via (3.51)

Rµν = Ωα
µ(eα, eν) . (3.88)

Using the fact that Kij is symmetric and ωij is anti-symmetric we now obtain

R00 = Ωi
0(ei, e0) =

1

α
∆̄α + dKi

i(e0)−Ki
jK

j
i (3.89)

=
1

α
∆̄α−Ki

jK
j
i +

3

α
(∂t − L̄β̄)H . (3.90)
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For the second equal sign we have introduced 3H = Ki
i which is often called the

’mean curvature’. Note that our definition of H differs by a factor 3 from the
notation used in mathematics literature. We do this in order for H to denote the
Hubble parameter in a Friedmann universe. We have also used

dKij(e0) = e0(Kij) =
1

α
(∂t − L̄β̄)Kij . (3.91)

Finally we want to determine

Rij = Ω0
i(e0, ej) + Ωk

i(ek, ej) . (3.92)

Eq. (3.38) gives the second term,

Ωk
i(ek, ej) = R̄ij + 3HKij −KikK

k
j . (3.93)

For the first term we use (3.87)

Ω0
i(e0, ej) = Ωi

0(e0, ej) = − 1

α
α|ij − dKij(e0) +Kik(ω

k
j(e0) +Kk

j )− ωik(e0)Kk
j .

(3.94)
Using again (3.91) and adding both contributions we can write Rij as

Rij = R̄ij + 3HKij −
1

α
α|ij −

1

α
(∂t − L̄β̄)Kij +Kikω

k
j(e0) +Kk

j ωki(e0) .

For the last three terms we now use (3.85) which finally leads to

Rij = R̄ij + 3HKij − 2(K̄2)ij −
1

α
(∂tK̄ − L̄β̄K̄)ij −

1

α
α|ij . (3.95)

For the Riemann scalar we obtain

R = Ri
i −R00 = R̄ + (3H)2 + tr(K̄2)− 6

α
(∂t − L̄β̄)H − 2

α
∆α . (3.96)

Note that tr
(
∂tK̄ − L̄β̄K̄

)
= (∂t−L̄β̄)H−2αtr(K̄2). This is best seen from (3.85).

With this we finally also obtain the ij components of the Einstein tensor,

Gij = Rij −
1

2
Rδij

= R̄ij + 3HKij − 2(K̄2)ij −
1

α
(∂tK̄ − L̄β̄K̄)ij −

1

α
α|ij

−1

2

(
R̄ + (3H)2 + tr(K̄2)− 6

α
(∂t − L̄β̄)H − 2

α
∆α

)
δij . (3.97)

Note that the only second time derivative in these equations is ∂tK̄ (and 3∂tH =
∂ttrK̄). Hence the (ij) Einstein equations determine the time evolution of K̄
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(assuming that the matter equations can be solved and Tij can be expressed in
terms of the metric and its first derivatives). The time evolution of the metric is
then obtained via (3.81),

∂tḡ = L̄β̄ ḡ − 2αK̄ . (3.98)

The equations (3.98) and Gij = 8πGTij where ∂tK̄ is isolated in Gij as given in
(3.97) are called the ADM (Arnowitt, Deser, Misner) evolution equations. This
system of equations has traditionally been used in numerical relativity. It turned
out, however not to be ideal. Especially, the ADM evolution equations do not
satisfy any known hyperbolicity criterion. This situation led to the development of
alternative schemes; among them several which are explicitly hyperbolic. [2]. There
are, however relativly simple ways to rewrite these equation (e.g. by separating
out the conformal degree of freedom of ḡ) which lead to explicitely hyperbolic
equations which are numerically stable, see [4].

Exercise: Consider a static spherically symmetric metric of the form

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2

(
dϑ2 + sin2 ϑdϕ2

)
. (3.99)

Use the 3+1 formalism for this metric to compute the Einstein tensor. What
properties does the energy momentum tensor need to have in order to satisfy these
equations? Discuss 3 examples:

• The vacuum (Schwarzschild).

• A cosmological constant (Kottler or Schwarzschild de Sitter).

• An electric point charge (Reissner-Nordstrom).

Show that solutions are ’additive’ in the sense that if the functions f and g solve
the Einstein equations with the above metric and energy momentum tensor T f

and T g then f + g solves Einstein’s equations for T = T f + T g.

3.3.4 Gaussian normal coordinates

We may interpret Eqs. (3.98) and (3.97) as evolution equations for the metric ḡ
and for the extrinsic curvature K̄. Together with the constraints (3.56, 3.52) which
have to be satisfied on Σt for all t.

To simplify the problem one may specify up to four coordinate conditions to fix
the Σt slicing and the spatial coordinates xi on Σ. An especially simple local
coordinate system are so called Gaussian normal coordinates which are defined by

α = 1, βi = 0 Gaussian normal coordinates . (3.100)
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We now want to show that such coordinates always exist locally. For this we
consider a hypersurface Σ0 with timelike normal n. In the neighborhood U of a
point p ∈ Σ0 we construct the timelike geodesic c(t, q) tangent to n with c(0, q) = q.
We choose coordinates x1, x2, x3 on U and consider the points x1 = x1

(0) + s, x2, x3

with s small enough so that these coordinates label points in U . We now consider
the two parameter family of points c(t, s) = c(t, x1

(0) + s, x2, x3). In the coordinates

(t, x1, x2, x3) we have n = ∂t and ∂x1 = ∂s since [∂t, ∂s] = 0 also [n, c∗∂s] = 0.
Identifying ∂s ≡ c∗∂s we therefore have

0 = [n, ∂s] = ∇n∂s −∇∂sn (3.101)

Since g(n, n) ≡ 〈n, n〉 = −1 clearly for the times slicing Σt = {c(t, q)|q ∈ Σ0 ∩ U}
we have α = 1. We now want to show that also β = 0, i.e. n = ∂t is normal on
Σt. For t = 0 this is so by construction. For t > 0 we have

t = −
∫ t

0

〈n, n〉dt (3.102)

independent of the position q ∈ U . Therefore

0 =
1

2
∇∂s

∫ t

0

〈n, n〉dt′ =
∫ t

0

〈∇∂sn, n〉dt′ =
∫ t

0

〈∇n∂s, n〉dt′

=

∫ t

0

∇n〈∂s, n〉dt′ =

∫ t

0

d

dt′
〈∂s, n〉dt′ = 〈∂s, n〉(t)− 〈∂s, n〉(0) ,

where we have used ∇nn = 0 for the second line. Since n is normal to Σ at t = 0
and ∂s is tangent, the second term vanishes and we obtain 〈∂s, n〉(t) = 0. Hence
the coordinate x1 remains normal to n in the entire neighbourhood of values t for
which the geodesics are well defined. The same argument applies to x2 and x3 and
we find that in the chosen coordinates the metric takes the form

ds2 = −dt2 + gij(t,x)dxidxj . (3.103)

Hence α = 1 and β = 0 as requested.

For the Friedmann metric, cosmic time specifies Gaussian normal coordinates, see
Eq. (3.65).

Exercise: Write the Einstein equations in Gaussian normal coordinates.

Exercise: Another often used coordinate system are ’maximal slicing’ coordi-
nates which satisfy trK̄ = 3H = 0. In this coordinate system the 00 equation
yields

1

α
∆̄α− tr(K̄2) = 16πGT00 .

Find maximal slicing coordinates for a spatially flat Friedmann universe. (In these
coordinates the Universe is not expanding.)
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3.4 The Hamiltonian formulation of GR

In their 4-dimensional coordinate invariant form the Einstein equations are not
adapted to a Hamiltonian treatment. Contrary to a Lagrangian, a Hamiltonian
density requires a time coordinate with respect to which we define ’evolution in
time’. This is already evident by the definition of a Hamiltonian as

H(φ, πφ) = πφ
∂L
∂φ̇
− L(φ, φ̇) , πφ ≡

∂L
∂φ̇

. (3.104)

Here φ denotes one or several fields and we assume L to depend on the fields, their
spatial derivatives and their first time derivatives denoted by φ̇.

The 0µ Einstein equations are

2G00 = R̄ + (3H)2 − tr(K̄2) = 16πGT00 (energy constraint) (3.105)

G0i = 3H̄|i − K̄j
i|j = 8πGT0j (momentum constraint) . (3.106)

As already discussed above, these equations contain only first time derivatives of
the metric. Hence they are constraints and not evolution equations.

In order to find a Hamiltonian we start with the usual gravitational action

S =
1

16πG

∫
d4x
√

det gR . (3.107)

We use (3.96)

R = R̄ + (3H)2 + tr(K̄2)− 6

α
(∂t − L̄β̄)H − 2

α
∆α .

We now show that the last two terms can be replaced by a divergence, namely

3

α
(∂t − L̄β̄)H − 2

α
∆α = ∇µ(3Hnµ + aµ) + (3H)2 . (3.108)

Using Kµν = −∇µnν − nµaν with ∇nn = a and n = α−1(∂t − β), we obtain
3H = Kµ

µ = −∇µnµ so that

∇µ(3Hnµ + aµ) =
3

α
(∂t − L̄β̄)H − (3H)2 +∇µa

µ .

Hence our claim (3.108) follows if ∇µa
µ = ∆̄α/α. To show this we first note that

a = ∇e0e0 = ωi0(e0)ēi = α,i/αēi. In other words, if α is independent of the spatial
coordinates then a = 0 and n is a geodesic. Now

aµ;µ = aµ,µ + aνωµν(eµ) = ai|i + aiω0
i(e0) = ai|i + aiα,i/α .
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For the last equal sign we used (3.73) for ω0
i(e0). With ai = α,i/α we have

ai|i = ∆̄α/α− (α,i/α)2. Combining this with the previous expressions yields

aµ;µ =
∆̄α

α
, (3.109)

and hence implies (3.108). With this we can write (3H = Kµ
µ)

R = R̄+KijK
ij− (3H)2−2∇µ(3Hnµ +aµ) = LADM −2∇µ(3Hnµ +aµ) . (3.110)

We this the action becomes

S =
1

16πG

∫
d4x
√

det gLADM − 2∇µ(3Hnµ + aµ) = SADM + Ssurface , (3.111)

LADM = R̄ +KijK
ij − (3H)2 . (3.112)

The second term is a surface term which does not contribute to the equations of
motion. The first term is called the ADM (Arnowitt, Deser, Misner) Lagrangian.

In order to study this action we use that the determinant of our metric (3.4) is
det g = α2 det ḡ (exercise) so that we can write

SADM =
1

16πG

∫
dt

∫
d4xα

√
det ḡ

(
R̄ +KµνK

µν − (3H)2
)
. (3.113)

This action is correct in an arbitrary coordinate system and we shall now consider
it wrt the coordinates (t, xi). In the rest of this section, tensorial components are
considered wrt the dual bases ∂t, ∂i and dt, dxi.

Exercise: Show that for the metric

(gµν) =

(
−(α2−β2) βi

βj ḡji

)
(3.114)

the determinant is given by det g = −α2 det ḡ. Here β2 = βiβj ḡ
ij.

We now consider Eq (3.113) as our Lagrangian for a field theory of the fields α, βi

and ḡij. From the expression for Kµν (see eq. (3.79)) we see that no time derivatives
of α and βi enter in

√
det gLADM . Therefore the equations from varying α and

βi will give constraint equations and these variables are not dynamical. However,
cij + cji = ∂tḡij appears in Kµν and therefore the 6 variables ḡij are dynamical.

To derive the Hamiltonian we introduce their momenta

πij =
∂

∂ ˙̄gij

(√
det gLADM

)
. (3.115)
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Since LADM depends on ˙̄gij only through Kij we have

πij =
∂Kmn

∂ ˙̄gij

(√
det g

∂

∂Kmn

LADM

)
. (3.116)

But with (3.81) we get

∂Kmn

∂ ˙̄gij
= − 1

2α
δimδ

j
n and

∂

∂Kmn

LADM =
∂

∂Kmn

[(ḡilḡjk − ḡij ḡlk)KijKlk]

= (δmi δ
n
jKlk + δml δ

n
kKij)[ḡ

ilḡjk − ḡij ḡlk] so that

πij = −
√

det ḡ
[
Kij − ḡij3H

]
.

This leads to the following expression for the Hamiltonian density,

HADM =
(
πij ˙̄gij − LADM

)
(3.117)

=
√

det ḡ
[(
Kij − ḡij3H

) (
2αKij − βi|j − βj|i

)
−α
(
R̄ +KlmK

lm − (3H)2
)]

(3.118)

=
√

det ḡ
[
α(KlmK

lm − (3H)2 − R̄)

−2[(Kij − 3Hḡij)βi]|j + 2(Kij − 3Hḡij)|jβi
]
. (3.119)

Ignoring the total (spatial) divergence term we can write this Hamiltonian as

HADM(t) =

∫
Σt

d3x
√
ḡ
[
α(KijK

ij − (3H)2 − R̄) + 2(Kij − 3Hḡij)|jβi
]
.

(3.120)

This is the ADM Hamiltonian. In this expression Kij is to be understood as a
function of the canonical variables ḡij and πij. More precisely

√
det ḡKij = −

(
πij − 1

2
πmm ḡ

ij

)
. (3.121)

To obtain the evolution equations we can now use the canonical equations,

˙̄gij =
∂

∂πij
HADM (3.122)

π̇ij = − ∂

∂ḡij
HADM . (3.123)
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It is an exercise to show that these equations are equivalent to (3.98) and the
Gij = 0 vacuum Einstein equation. To obtain also the constraint equations we
must vary the Lagrangian. Here we vary LH = H− πij ˙̄gij, i.e.

16πGSH =

∫ t2

t1

dt

[∫
Σt

d3xπij ˙̄gij −HADM

]
. (3.124)

The dynamical variables are now (ḡij, β
i, α) and the momenta πij. A somewhat

lengthy calculation gives

δHADM =

∫
Σt

(
Πijδḡij +Qijδπ

ij − Cδα− 2Biδβ
i
)
d3x , (3.125)

where the two constraint functions are

C = R̄ + (3H)3 −KijKij (= 2G00 wrt the orthonormal frame) (3.126)

Bi = −
(
Kj
i − 3Hδji

)
|j (= G0i wrt the orthonormal frame). (3.127)

The two other derivatives give

Qij = 2
α√

det ḡ

(
πij −

1

2
πmm ḡij

)
+ βi|j + βj|i (3.128)

Πij = α
√

det ḡGij − 1

2

α√
det ḡ

(
πmnπmn −

1

2
πmmπ

n
n

)
ḡij

+2
α√

det ḡ

(
πimπ

mj − 1

2
πmmπ

ij

)
−
√

det ḡ
(
α|ij − ḡijβm|m

)
−
√

det ḡ
(

(
√

det ḡ)−1πijβm
)
|m

+ πmiβj|m + πmjβi|m . (3.129)

Note that the first term Gij here is the expression for the spatial components of the
Einstein tensor in coordinates, not wrt. the orthonormal frame, but in coordinates!
We leave the derivation as an exercise for rainy Easter days...

The variation of the full action therefore gives Qij− ˙̄gij and Πij+ π̇ij. The vacuum
Einstein equations therefore are

Bi = 0 , C = 0 and (3.130)

˙̄gij = Qij , π̇ij = − Πij . (3.131)

The ˙̄gij equation is clearly equivalent to (3.98). A somewhat lengthy but straight
forward algebra shows that the π̇ij equation is equivalent to Gij = 0 in the or-
thonormal frame. The fastest way to see this is to express Gij in coordinates in
terms of Gµν wrt the orthonormal frame which we have determined in the pre-
vious section. Considering the cumbersome expression for Πij it becomes clear
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that Gaussian normal coordinates where this expression reduces tho the first three
terms are very useful.

Exercise: Superspace and the Wheeler-DeWitt equation
We consider Gaussian normal coordinates, α = βi = 0 so that the ADM Hamilto-
nian becomes

(16πG)HADM =

∫
Σt

(KµνK
µν − (3H)2 − R̄)

√
ḡd3x ≡

∫
d3xHADM . (3.132)

a) Show that the vacuum Einstein equations imply HADM = 0.

b) Derive the following equivalent expressions for HADM

HADM =
1√
ḡ

(
πkmḡkiḡmjπ

ij − 1

2
ḡkiḡmjπ

kiπmj
)
−
√
ḡR̄ (3.133)

=
1

2
Gijkmπ

ijπkm + V (ḡij) (3.134)

=
1

2
Gijkmπijπkm + V (ḡij) , (3.135)

where V = −
√
ḡR̄ and

Gijkm =
1√
ḡ

(ḡikḡjm + ḡimḡjk − ḡij ḡkm) (3.136)

Gijkm =

√
ḡ

4

(
ḡikḡjm + ḡimḡjk − 2ḡij ḡkm

)
. (3.137)

Note that in (3.135) the indices in πij are not lowered with the 3-metric ḡij
but with Gijkm so that now πij ≡ Gijkmπ

km.
Show also that GijkmG

lnkm = (δliδ
n
j + δljδ

n
i )/2.

The space of 3-metrics ḡij(x) is called ’superspace’ and Gijkm can be consid-
ered as a metric on this superspace. It is called the Wheeler-DeWitt metric.

c) Consider the space of diagonal metrics and call ḡAA = hA so that Gijkmπ
ijπkm

becomes GABπ
AπB. One can now introduce a line element on this ’super-

space’ dL2 = GABdh
AdhB, where the summation and integrations d3x are

understood. Show that the 3-metrics which satisfy Einstein’s vacuum equa-
tions satisfy a ’geodesic equation’ on mini superspace with an extra force
term coming from the potential V . Derive this equation.

d) Quantum cosmological models are usually based on ’mini-superspace’ where
one additionally assumes that the metric is homogeneous, hA does not depend
on x. The wave function on superspace, Ψ[ḡ] satisfies HADMΨ = 0. Derive
this equation in mini-superspace where it leads to a system of equations for
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hA(t).
The equation

HADMΨ[ḡij] = 0 (3.138)

is called the Wheeler-DeWitt equation.

3.5 ADM energy and momentum of isolated sys-

tems in asymptotically flat spacetimes

As is well known, energy and momentum of the gravitational field are in general
not well defined and the covariant ’conservation’ equation, T µν;µ = 0 is not a con-
servation equation, i.e., in general there is no integral over a spatial hypersurface
which is time independent. Nevertheless, it is possible to define (several) so called
’pseudo-tensor(s)’ of the gravitational field, τµν which, together with the energy
momentum 3-form ∗Tα ≡ ∗(Tαµ θµ) satisfy

d[
√
−g(∗Tα + ∗τα)] = 0 . (3.139)

So that for any domain D in spacetime Stokes’ theorem implies

0 =

∫
D

d(
√
−g(∗Tα + ∗tα)) =

∫
∂D

√
−g(∗Tα + ∗τα) . (3.140)

In an asymptotically flat spacetime we can choose the domain, bounded by some
initial hypersurface Σt1 and a final hypersurface Σt2 , very large such that we may
neglect Tα and τα at the border ∂Σt × {t}. In this case we obtain

Pα(t1) ≡
∫

Σt1

√
−g(∗Tα + ∗τα) =

∫
Σt2

√
−g(∗Tα + ∗τα) ≡ Pα(t2) . (3.141)

Hence in this situation

Pα(t) =

∫
Σt

√
−g(∗Tα + ∗τα) (3.142)

is a conserved 4-momentum. (If we work wrt an orthonormal frame the pre-factor√
−g can be omitted.)

We now show that the Landau-Lifshitz energy momentum pseudo-tensor is such
that (3.139) is satisfied , where

∗ταLL ≡ −
1

16πG
ηαβγδ (ωσβ ∧ ωσγ ∧ θδ − ωβγ ∧ ωσδ ∧ θσ) . (3.143)

Here ηαβγδ = −εαβγδ/
√
−g is the totally anti-symetric tensor with indices raised.
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To see this, we introduce the 1-form ηαβγ ≡ ηαβγδθδ. It is easy to verify that
(exercise!)

ηαβγ = ∗(θα ∧ θβ ∧ θγ) (3.144)

With this, Einstein’s equation can be written in the form (exercise!)

−1

2
Ωβγ ∧ ηβγα = 8πG ∗ Tα . (3.145)

From the second structure equation (Ωβ
γ = dωβγ+ωβσ∧ωσγ) and dgµν = ωµν+ωνµ

we conclude
Ωβγ = dωβγ − ωσβ ∧ ωσγ , (3.146)

hence (3.145) is equivalent to

−1

2
ηαβγδθδ ∧ (dωβγ − ωσβ ∧ ωσγ) = 8πG ∗ Tα . (3.147)

On the first term we perform an ’integration by parts’ writing

θδ ∧ dωβγ = −d(θδ ∧ ωβγ) + dθδ ∧ ωβγ .

With the first structure equation and the above expression for dgµν we have

dθδ = d(gδµθ
µ) = dgδµ ∧ θµ + gδµdθ

µ = ωµδ ∧ θµ .

Inserting this above together with (3.143) yields

−1

2
ηαβγδd (ωβγ ∧ θδ) = 8πG(∗Tα + ∗ταLL) . (3.148)

We now multiply this expression with
√
−g using that

√
−gηαβγδ = εαβγδ is con-

stant we obtain

−d
(√
−gηαβγδωβγ ∧ θδ

)
= −d

(√
−gωβγ ∧ ηαβγ

)
= 16πG

√
−g(∗Tα + ∗ταLL) ,

(3.149)
which implies the conservation law

d
(√
−g(∗Tα + ∗ταLL

)
= 0 . (3.150)

To define also a conserved angular momentum it is important to notice that in a
coordinate basis ταβLL is symmetric.

Exercise: Show that ταβLL defined by ταLL = ταβLLθβ is symmetric in a coordinate
basis. To do so, show first that this is equivalent to

∗ταLL ∧ dxµ = ∗τµLL ∧ dx
α .

Then show this latter equation (this is a lengthy derivation!).



68 Section 3.5

It is important to note that with the connection forms also ταβLL does not transform
like a tensor. At a given point p we can always choose coordinates such that
ωαβ(p) = 0 which implies that ταβLL(p) = 0 in these coordinates. Nevertheless, its
integral over spatial hypersurfaces is meaningful in asymptotically flat spacetimes.

Denoting the total energy momentum pseudo-tensor by

T αβ = Tαβ + ταβLL (3.151)

we now introduce the pseudo-angular momentum density in a coordinate basis (xµ)

∗Mαβ = xα ∗ T β − xβ ∗ T α . (3.152)

With d(
√
−g ∗ T α) = 0 we now have

d(
√
−g ∗Mαβ) =

√
−g(dxα ∧ ∗T β − dxβ ∧ ∗T α) = 0 , (3.153)

where we have used the symmetry of T αβ for the last equal sign.

The conserved integrals

P µ =

∫
Σt

√
−g ∗ T µ and (3.154)

Jµν =

∫
Σt

√
−g ∗Mµν (3.155)

are called the ADM energy (mass) P 0, the ADM momentum P i, and the ADM
angular momentum J ij of the isolated system.

Integrating (3.149) over a large spatial domain D ⊂ Σt we obtain with Stokes

16πG

∫
D

√
−g ∗ T α = −

∫
∂D

√
−gωβγ ∧ ηαβγ . (3.156)

Extending D to all of space ∂D becomes a sphere at infinity which we denote by
S∞ and we obtain

P µ =
−1

16πG

∫
S∞

√
−gωβγ ∧ ηαβγ . (3.157)

Also the angular momentum can be written as a flux integral. Setting

hα ≡ −
√
−gωβγ ∧ ηαβγ

we can write, again using (3.149)

16πG
√
−g ∗Mµν = xµdhν − xνdhµ (3.158)

= d (xµhν − xνhµ)− (dxµ ∧ hν − dxν ∧ hµ) . (3.159)
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With a somewhat lengthy calculations (see [16] for details) one finds that also the
second term is a differential,

dxµ ∧ hν − dxν ∧ hµ = −d
(√
−gηµν

)
, (3.160)

where we have introduced

ηµν = ηµναβdx
α ∧ dxβ . (3.161)

If we insert this expression for ∗Mµν in (3.155) we find

Jµν =
1

16πG

∫
S∞

(
xµhν − xνhµ +

√
−gηµν

)
. (3.162)

Exercise: Compute P µ and Jµν for the Schwarzschild metric.

To make contact with the literature, e.g. Ref. [9] where ταβLL is computed explicitly
in coordinates one may solve the following exercise.
Exercise: Show that

dhµ =
1√
−g

Hµανβ
,αβ ην , (3.163)

where

ην = ηναβγθ
α ∧ θβ ∧ θγ and (3.164)

Hµανβ = g̃µν g̃αβ − g̃αν g̃µβ g̃µν ≡
√
−ggµν . (3.165)

The tensor Hµανβ is sometimes called the Landau-Lifshitz super potential. This
result implies

−gGµν =
1

2
Hµανβ
,αβ + 8πGgτµνLL . (3.166)

(The solution to this rather lengthy exercise can be found in [16].)

Finally we want to derive asymptotic expressions for P µ for a mtetric which has the
following decay properties: We request that outside a compact region, the spatial
metric can be written as

gij = δij + hij (3.167)

in standard R3 cartesian coordinates where

hij ∼ O(1/r), hij,m ∼ O(1/r2) hij,mn ∼ O(1/r3)

and the extrinsic curvature decays like

Kij ∼ O(1/r2) Kij,m ∼ O(1/r3) .
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To lowest order in 1/r we then have

ωαβ = gαγΓ
γ
βνdx

ν =
1

2
(gβα,ν + gνα,β − gνβ,α) dxν + · · · (3.168)

ηµαβ = εµαβγdx
γ + · · · (3.169)

so that

P 0 =
1

16πG
ε0ijk

∫
S∞
gjm,idx

m ∧ dxk (3.170)

=
−1

16πG
εijk

∫
S∞
gjm,idx

m ∧ dxk (3.171)

=
1

16πG

∫
S∞

(gml,m − gmm,l)N lds . (3.172)

For the last equality we have used dxm∧dxk = εlmkNlds where we have introduced
the unit normal to the sphere N l and the surface element of the sphere, ds = r2dΩ.
For the second equality we have used 1 = ε0123 = −ε012

3 = ε123. As gij,k ∼ 1/r2

and ds ∝ r2, this integral is independent of r and the limit r → ∞ can be
taken. Furthermore, all higher order terms in 1/r do not contribute in this limit.
Eq. (3.172) is our final expression for the ADM mass of an isolated system.

Similarly one derives for the ADM momentum, using ω0j|Σt = Kjidx
i

P n =
−1

16πG
εnαβk

∫
S∞
ωαβ ∧ dxk (3.173)

=
−2

16πG
εn0j

k

∫
S∞
ω0j ∧ dxk (3.174)

=
−1

8πG
εnjk

∫
S∞
Kjidx

i ∧ dxk (3.175)

=
1

8πG

∫
S∞

(Knj − δnjKi
i)N

jds . (3.176)

Eq. (3.176) is our final expression for the ADM momentum of an isolated system.
The integrals are to be understood as limits r →∞ of integrals over a large sphere
of radius r.

Exercise: Derive a corresponding expression for the ADM angular momentum
for a stationary spacetime. In the stationary case one can require that the metric
asymptotically takes the form

g00 = −
(

1− 2m

r
+

2m2

r2

)
+O(r−3) (3.177)
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g0i = −2εijk
Sjxk

r3
+O(r−3) (3.178)

gij = −
(

1 +
2m

r

)
δij +O(r−2) . (3.179)

3.6 Static and stationary spacetimes

We have seen that a stationary spacetime, i.e., a metric with a timelike Killing
field b, Lbg = 0, is one where we can introduce coordinates such that the metric
coefficients do not depend on time, ∂tgµν = 0. If the metric is static, i.e., b[∧db[ = 0,
we can even find coordiates such that the shift vector vanishes and g takes the form

ds2 = g00(x)dt2 + gij(x)dxidxj = −α2(x)dt2 + ḡ(x) . (3.180)

On the hypersurface Σ we can then introduce an orthonormal basis ēi of ḡ, which
together with e0 ≡ n = α−1∂t = (

√
−g00(x))−1∂t form an orthonormal basis of

spacetime with shift vector ~β = 0. We denote the dual 1-forms by θ0 = α(x)dt
and θi = ϑi. The first structure equation gives

dθ0 = −ω0
i ∧ θi = α,iθ

0 ∧ θi (3.181)

dθi = −ωij ∧ θi − ωi0 ∧ θ0 = −ωij ∧ θi . (3.182)

Here α,i ≡ ēi(α) which in general is not just a partial derivative wrt to some
coordinate xi, since the ēi are orthonormal vector fields. The above eqns. imply
ω0

i = −α,iθ0 and ω0
i vanishes on TΣ hence

K ≡ 0 for a static spacetime. (3.183)

For the Einstein tensor we conclude G0i = 0 and

G00 =
1

2
R̄ for a static spacetime. (3.184)

3.6.1 The Komar formula

For stationary asymptotically flat spacetimes there is the following interesting for-
mula to obtain the total mass of the system,

M = − 1

8πG

∫
S∞
∗db[ . (3.185)
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Let us prove this formula using Eqs. (3.177-3.179) for the asymptotic form of the
metric. At large r,

b[ = (∂t)
[ = g0µdx

µ = −
(

1− 2m

r

)
dt+O(1/r2)

db[ = −2m

r3
xidxi ∧ dt+O(1/r3)

∗ db[ = −2m

r3
xiεijkdx

j ∧ dxk +O(1/r3) .

Inserting this above we find

− 1

8πG

∫
S∞
∗db[ =

2m

8πG

∫
S∞
r−3xiεijkdx

j ∧ dxk =
m

4πG

∫
S∞
r−3xiN ir2dΩ =

m

G
= M .

(3.186)

For stationary, asymptotically flat metrics therefore the ADM mass and the Komar
mass agree. If spacetime is not stationary, the Komar mass is not well defined (it
is in general not a conserved quantity) but the ADM mass is.



Chapter 4

Black holes

4.1 Axi-symmetric, stationary spacetimes

A spacetime (M, g) is called axisymmetric if it admits the group SO(2) as an
isometry group with closed spacelike orbits. In the following we shall also request
that spacetime be asymptotically flat. A spacetime (M, g) is axisymmetric and
stationary if the group R×SO(2) acts isometrically and the Killing field belonging
to time translations, R, is at least asymptotically timelike. We denote the two
Killing fields belonging to the R and SO(2) symmetry by b and m respectively. As
the group action on M is commutative, also the generators commute 1,

[b,m] = 0 . (4.1)

The orbits of the 2-dimensional symmetry group R × SO(2) form 2-dimensional
sub-manifolds, Σ ⊂M whose tangent space is spanned by b and m. The collection
of these tangent spaces therefore forms an involutive (integrable) 2-dimensional
distribution E. We also consider the orthogonal 2-dimensional distribution, E⊥

such that TpM = Ep⊕E⊥p , p ∈M. For vectors X ∈ E⊥ we have b[(X) = 〈b,X〉 = 0

and equivalently m[(X) = 0. Hence b[ and m[ generate the ideal I(E⊥). Frobenius’
theorem implies that also E⊥ is involutive if and only if this ideal is differential.
But this is equivalent to the Frobenius conditions

b[ ∧m[ ∧ db[ = 0 = b[ ∧m[ ∧ dm[ . (4.2)

Below we shall show that Einstein’s vacuum equations imply (4.2). If this condition
is satisfied we call (M, g) circular. As we have shown in Section 1.7 in this case we
can find coordinates adapted to E and E⊥ such that

b = ∂t , m = ∂φ (t = x0, ϕ = x1) (4.3)

1Show as an exercise that two vector fields X and Y commute if and only if their respective
flows ΦX

s and ΦY
t commute, i.e. ΦX

s ◦ ΦY
t (p) = ΦY

t ◦ ΦX
s (p)

73
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(4)g = σab(x
i)dxadxb + gij(x

k)dxidxj where a, b ∈ {0, 1} (4.4)

and i, j, k ∈ {2, 3} .

In summary, a stationary and axisymmetric asymptotically flat vacuum spacetime
(M,(4)g) is circular and can be described locally as

M = Σ× Γ , (4)g = σ + g . (4.5)

Here Σ is diffeomorphic to R × SO(2) and the metric coefficients in the adapted
coordinates (x0 = t, x1 = ϕ) depend only on the coordinates of Γ. (Σ, σ) is
a 2-dimensional Lorentz manifold while (Γ, g) is a two dimensional Riemannian
manifold orthogonal to Σ. The two Killing fields b and m are tangent to Σ and
orthogonal to Γ. We shall choose the indices a, b, c to denote coordinates on Σ and
i, j, k to denote coordinates on Γ.

To show (4.2) we introduce the 1-form R(m) = Rµνm
µdxν which is called the

Ricci form of m. We shall now show that (4.2) is equivalent to the ’Ricci cirularity
condition’,

b[ ∧m[ ∧R(b) = 0 = b[ ∧m[ ∧R(m) . (4.6)

In vacuum these Ricci forms of course vanish which then proves (4.2).

To show this equivalence we first introduce the ’twist 1-forms’ belonging to b and
m,

ωb =
1

2
∗ (b[ ∧ db[) ωm =

1

2
∗ (m[ ∧ dm[) . (4.7)

The first 4-form in (4.2) is proportional to m[ ∧ ∗ωb = 〈m,ω]b〉η where η is the
volume form on M, g (see exercises of Chapter 1). Here we have introduced the
scalar product 〈·, ·〉 for arbitrary tensor fields of equal rank. For two tensor fields,
U and V of rank s we simply set

〈U, V 〉 = Ui1···isV
i1,···,is = U i1···isVi1,···,is . (4.8)

Hence the Frobenius conditions are equivalent to

〈m,ω]b〉 = 〈b, ω]m〉 = 0 . (4.9)

But since m is a Killing field commuting with b, Lmg = 0, Lmb = 0 and therefore
Lmωb = 0 (Remember that L commutes with d hence from Lmb = 0 we follow that
Lmdb = dLmb = 0.). With the Cartan identity, Lm = d ◦ im + im ◦ d we obtain

d〈m,ω]b〉 = dimωb = −imdωb .

Below we shall show that
dωb = ∗(b[ ∧R(b)) (4.10)
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so that this gives

d〈m,ω]b〉 = −im ∗ (b[ ∧R(b)) (4.11)

and equivalently with m and b interchanged,

d〈b, ω]m〉 = −ib ∗ (m[ ∧R(m)) . (4.12)

This shows that the Frobenius condition implies the Ricci circularity condition
since in complete generality for a p−form α and a vector field X we have (Exer-
cise)

iX ∗ α = ∗
(
α ∧X[

)
. (4.13)

Conversely, the Ricci circularity condition implies d〈m,ω]b〉 = d〈b, ω]m〉 = 0, hence
these scalar products are constant. But as our spacetime is asymptotically flat
there are fixpoints under SO(2) as there are in flat space. Hence there are points
where m = 0 and consequently the above scalar products must vanish, hence (4.2)
is valid if (4.10) holds.

4.1.1 Derivation of Eq. (4.10)

We first show that for an arbitrary Killing field k

d ∗ dk[ = 2 ∗R(k) . (4.14)

To see this we use the Ricci identity,

kσ;ρµ − kσ;µρ = Rλ
σρµkλ (4.15)

The Killing equation, kσ:ρ + kρ;σ = 0 implies kρ;ρ = 0. Contracting σ and µ above
therefore yields

kσ;ρ
;σ = −kρ;σ

;σ = Rλρk
λ = R(k)ρ . (4.16)

But it is easy to see that for an aribtrary p-form α in coordinates (δα)k1···kp−1 =
αjk1···kp−1

;j. Applying this to the 2-form dk[ = (kρ;σ − kσ;ρ)dx
σ ∧ dxρ) we obtain

δdk[ = −(∗d∗)dk[ = −2R(k) . (4.17)

We used that in 4 dimensions with sgn(g) = −1 we have δ = −(∗d∗). Taking the
∗ on both sides and using ∗∗ = id for 3-forms we obtain (4.14).

We now show also the following identity for a Killing field k and a p-form α:

δ(k[ ∧ α) = −k[ ∧ δα + Lkα . (4.18)
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For this we use

δ(k[ ∧ α) = (−1)p(∗)−1d ∗ (k[ ∧ α) = (∗)−1d ∗ (α ∧ k[)

= (∗)−1d(ik ∗ α) = (∗)−1 (Lk − ikd) ∗ α

= Lkα− (∗)−1ikd ∗ α .

Exercise: Show that for an arbitrary vector field X and p-form α we have
∗(α ∧X[) = iX ∗ α.

For the last term above we use

ikd ∗ α = ik(∗)−1 ∗ d ∗ α = (−1)p+1ik ∗ δα = ∗(k[ ∧ δα) .

Inserting this above we have (4.18).

With this we can now show (4.10) for ωk = 1
2
∗ (k[ ∧ dk[). We write

dωk =
1

2
d ∗ (k[ ∧ dk[) =

1

2
∗ δ(k[ ∧ dk[) (4.19)

and apply (4.18) on α = dk[. Since Lkdk
[ = dLkk

[ = [k, k][ = 0 this yields

dωk = −1

2
∗ (k[ ∧ δdk[) = ∗(k[ ∧R(k)) . (4.20)

4.2 Elements of the derivation of the Kerr solu-

tion

We now go on to compute the Riemann tensor from the metric

(4)g = σab(x
i)dxadxb + gij(x

k)dxidxj = σabθ
a ⊗ θb + gijθ

i ⊗ θj (4.21)

where θ0 = dt and θ1 = dφ and θi = dxi. We also introduce

V = −〈b, b〉 = −σtt , W = 〈b,m〉 = σtϕ , X = 〈m,m〉 = σϕϕ and (4.22)

A =
W

X
, S =

√
−σ =

√
V X +W 2 . (4.23)

We need the connection forms relative to the coordinate basis dxµ = θµ. The first
structure equations together with ωµν + ωνµ = dgµν yield

ωai + ωia = 0 (4.24)

ωab + ωba = dσab = σab,iθ
i (4.25)

ωij + ωji = dgij (4.26)

ωij ∧ θj + ωia ∧ θa = 0 (4.27)

ωab ∧ θb + ωai ∧ θi = 0 (4.28)
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It is easy to check that the following Ansatz satisfies the equations:

ωij = connection forms of (Γ, g) (4.29)

ωab =
1

2
dσab (4.30)

ωia = −ωai = −1

2
σab,iθ

b . (4.31)

It is now straight forward to compute the curvature forms. We concentrate on the
terms which enter the Ricci tensor,

(4)Rµν = Ωα
µ(eα, eν) eν ≡ ∂ν . (4.32)

To determine (4)Rij = Ωa
i(ea, ej) + Ωl

i(el, ej) we use the second structure equation,

Ωi
j = dωij + ωik ∧ ωkj + ωia ∧ ωaj (4.33)

= (g)Ωi
j+ ∝ θa ∧ θb (4.34)

From this it follows that

(4)Rk
imj = (g)Rk

imj and (4)Rk
ikj = (g)Rk

ikj (4.35)

For (4)Ra
iaj we use

Ωa
j = dωaj + ωak ∧ ωkj + ωab ∧ ωbj (4.36)

= d

(
1

2
σacσcb,jθ

b

)
+

1

2
σacσcb,kθ

b ∧ ωkj + ωab ∧ ωbj (4.37)

=

(
1

2
σacσcb,j

)
,i

θi ∧ θb +
1

2
σacσcb,kθ

b ∧ ωkj + ωab ∧ ωbj (4.38)

= (g)∇i

(
1

2
σacσcb,j

)
θi ∧ θb + ωab ∧ ωbj . (4.39)

Denoting the covariant derivative on (Γ, g) by a stroke, |, we find with this

Ωa
j(ea, ei) = −1

2
(σacσac,j)|i − ω

a
b(ei) ∧ ωbj(ea) (4.40)

= −
(
S,j
S

)
|i
− 1

4
σacσcb,iσ

bdσda,j (4.41)

= −
(
S,j
S

)
|i

+
1

4
σad,i σda,j (4.42)

= −
S|ij
S

+
S,jS,i
S2

+
1

4
σab,i σab,j . (4.43)
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Adding the two contributions we find

(4)Rij =(g)Rij −
S|ij
S

+
S,jS,i
S2

+
1

4
σab,i σab,j . (4.44)

This can be expressed in terms of the functions S, X, W and V . A short calculation
gives

(4)Rij =(g)Rij −
S|ij
S

+
1

4S2
[V,iX,j +X,iV,j + 2W,iW,j] . (4.45)

Let us go on to determine Rab = Ωc
a(ec, eb)+Ωi

a(ei, eb). Using the second structure
equation we find

Ωai =
1

2
σab|ijθ

j ∧ θb − 1

4
σac,jσ

cdσbd,iθ
j ∧ θb . (4.46)

Hence

(4)Raibj = −1

2
σab|ij +

1

4
σac,jσ

cdσbd,i (4.47)

(4)Ri
aib = −1

2
σ ,i
ab| i +

1

4
σac,iσ

cdσbd
,i . (4.48)

We still need

Ωc
a(ec, eb) = dωca(ec, eb) + (ωci ∧ ωia)(ec, ea) (4.49)

= (ωci ∧ ωia)(ec, ea) (4.50)

=
1

4
σcd
(
σdb,iσ

,i
ac − σcd,iσ

,i
ab

)
(4.51)

The second term equals −S,iσ,iab/2S. And using (σcdσdb),i = 0 the first term be-
comes

−1

4
σcd,i σbdσac

,i = −1

4
σadσ

cd
,i σbc

,i

so that
(4)Rc

acb = −S,i
2S
σab

′i − 1

4
σadσ

cd
,i σbc

,i . (4.52)

Adding (4.52) and (4.48) gives

(4)Rab = − 1

2S
σad
(
Sσcdσcb

,i
)
|i . (4.53)

In particular the partial trace Ra
a is

(4)Ra
a = − 1

2S
(Sσcaσca,i)

|i = − 1

S

(
S

1

S
S,i

)|i
= − 1

S
(g)∆S . (4.54)

Hence the vacuum equations imply that the function S =
√
− detσ is harmonic.
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A somewhat lengthy exercise shows that the mixed components vanish, (4)Rai = 0.

It is now quite easy to check that the following ’Ansatz’ satisfies the vacuum field
equations, (4)Rµν = 0:

ds2 = −
(

1− 2Mr

ρ2

)
dt2 − 4Mar sin2 ϑ

ρ2
dtdϕ+

(
r2 + a2 +

2Ma2r sin2 ϑ

ρ2

)
sin2 ϑdϕ2

+
ρ2

∆
dr2 + ρ2dϑ2 , (4.55)

where

ρ2(r, ϑ) ≡ r2 + a2 cos2 ϑ , ∆(r) ≡ r2 − 2Mr + a2 . (4.56)

The first line of (4.55) is the metric σabdx
adxb while the second line is gijdx

idxj.
Eq. (4.55) gives the famous Kerr metric in so called Boyer-Lindquist coordinates.

Exercise:
Use the expressions (4.45) and (4.53) to compute the Ricci tensor for the Kerr
solution (4.55) and show that it vanishes. (This requires still a considerable amount
of algebra. It might be useful to do it with a GR package of Mathematica.)

4.3 Some properties of the Kerr solution

A direct calculation of the Kretschman scalar K ≡ RµναβR
µναβ shows that K

diverges when

ρ2 = r2 + a2 cos2 ϑ→ 0 . (4.57)

Hence (r = 0, ϑ = π/2) is a true singularity of the Kerr spacetime.

The two parameters M and a represent the mass and the angular momentum. It
is easy to see that for a = 0, hence ρ = r this reduces to the Schwarzschild metric.
In the limit M → 0 the metric reduces to the form

ds2 = −dt2 +
ρ2

r2 + a2
dr2 + ρ2dϑ2 + (r2 + a2) sin2 ϑdϕ2 . (4.58)

This is nothing but flat space expressed in spheroidal coordinates. Performing the
coordinate transformation

x =
√
r2 + a2 sinϑ cosϕ , y =

√
r2 + a2 sinϑ sinϕ , z = r cosϑ , (4.59)

reduces (4.58) to the Minkowski metric. This actually indicates that in the ϑ = π/2
plane r = 0 corresponds to a ring of radius a and hence r is not the radial coordinate
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we are used to, which rather corresponds to R2 = r2 +a2 sin2 ϑ. This also indicates
that the singularity (r = 0, ϑ = π/2) is actually a ring (not a point) in space.

To interpret the parameter a it is useful to write the Kerr metric in the following
equivalent form:

ds2 = −(1− 2Mr

ρ2
)dt2 − 4Mar sin2 ϑ

ρ2
dtdϕ+

Σ2 sin2 ϑ

ρ2
dϕ2 +

ρ2

∆
dr2 + ρ2dϑ2 (4.60)

= −ρ
2∆

Σ2
dt2 +

Σ2 sin2 ϑ

ρ2

(
dϕ− 2Mra

Σ2
dt

)2

+
ρ2

∆
dr2 + ρ2dϑ2 , (4.61)

where
Σ2 = (r2 + a2)2 − a2∆ sin2 ϑ . (4.62)

The form (4.61) represents the metric in a form that suggests a rotating object.
In the limit r → ∞ one has Σ2 ' r4, ρ2 ∼ ∆ ∼ r2 and the metric reduces to the
weak field at large distance from a rotating body (see eq. (5.213) of [16]), which is
given by

g00 = −
(

1− 2M

r
+ 2

M2

r2

)
+O(r−3) , (4.63)

gi0 = 2εijk
Jkxj

r3
+O(r−3) , (4.64)

g00 =

(
1 +

2M

r

)
+O(r−2) , (4.65)

where M/G is the mass and ~J/G is the angular momentum of the body. Compar-
ison of these two expressions, using ~er × ~ez = − sinϑ~eϕ and (~eϕ)idx

i = r sinϑdϕ,
gives

g0idx
idt =

2J

r
sin2 ϑdϕdt for ~J = J~ez , hence (4.66)

~J = Ma~ez . (4.67)

From the Schwarzschild case we know that M is also the Komar mass,

M/G = − 1

8πG

∫
S∞
∗db[ . (4.68)

The angular momentum J = aM can also be obtained as a Komar integral,

J/G =
1

16πG

∫
S∞
∗dm[ . (4.69)

To see this we expand

m[ = gϕµdx
µ ' −2aM

r
sin2 ϑdt+ r2 sin2 ϑdϕ (4.70)

dm[ ' 2aM

r2
sin2 ϑdr ∧ dt+ 2r sin2 ϑdr ∧ dϕ+ · · · (4.71)
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The terms not written out will not contribute to the hodge dual ∗dm[ in the
integral over S. We work in the (up to order 1/r2) orthonormal basis

θ0 =

(
1− 2M

r

)
dt, θ1 = dr, θ2 = rdϑ (4.72)

θ3 = r sinϑ

(
dϕ− 2aM

r3
dt

)
. (4.73)

With this

dm[ ' 2aM

r2
sin2 ϑθ1 ∧ θ0 + 4

aM

r2
sin2 ϑθ1 ∧ θ0 + · · · (4.74)

=
6aM

r2
sin2 ϑθ1 ∧ θ0 + · · · (4.75)

∗ dm[ =
6aM

r2
sin2 ϑθ2 ∧ θ3 + · · · (4.76)

In the integral (4.69) this yields

J/G =
6aM

16πG

∫
S∞

sin3 ϑdϑ ∧ dϕ = aM/G . (4.77)

4.4 Properties of the Kerr-Newman family of so-

lutions

In this section we slightly generalize our solution to allow also for charged back
holes. This yields the so called Kerr Newman family of black hole solutions which
are given in terms of 3 parametes M, a and Q. Setting now

∆ = r2 − 2Mr + a2 +Q2 (4.78)

and as before

ρ2 = r2 + a2 cos2 ϑ , Σ2 = (r2 + a2)2 − a2∆ sin2 ϑ , (4.79)

the metric is given by

grr =
ρ2

∆
, gϑϑ = ρ2 , gϕϕ =

Σ2

ρ2
sin2 ϑ , (4.80)

gtt = −1 +
2Mr −Q2

ρ2
, gtϕ = −a2Mr −Q2

ρ2
sin2 ϑ . (4.81)

We orient the angular momentum such that a ≥ 0 and also request M ≥ 0 and
Q ≥ 0. The family contains the following special cases
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• Q = a = 0 : Schwarzschild solution,

• a = 0 : Reissner-Nordstrøm solution,

• Q = 0 : Kerr solution.

We can write the metric in standard 3 + 1 form

ds2 = −α2dt2 + gϕϕ(dϕ+ βϕdt)2 + grrdr
2 + gϑϑdϑ

2 , (4.82)

where only the ϕ-component of the shift vector is non zero. A brief calculation
yields

α2 =
−1

gϕϕ
(gttgϕϕ − g2

tϕ) =
ρ2

Σ2
∆ , (4.83)

βϕ =
gtϕ
gϕϕ

= −a2Mr −Q2

Σ2
(4.84)

The electromagnetic field of the Kerr-Newman solution is

F =
Q

ρ4

[
(r2 − a2 cos2 ϑ)dr ∧ (dt− a sin2 ϑdϕ)

+2ar cosϑ sinϑdϑ ∧ ((r2 + a2)dϕ− adt)
]
. (4.85)

Exercise: Verify that the homogeneous Maxwell equations are satisfied, dF = 0.

Denoting the current by the 1-form j = jµdx
µ, the inhomogeneous Maxwell equa-

tion give

δF = 4πj , 0 = δδF = ∗d ∗ j , hence d ∗ j = jµ;µη = 0 , (4.86)

which implies that the integral of ∗j over a 3d domain D is conserved. A short
calculation shows

Q =

∫
D
∗j =

1

4π

∫
D
d ∗ F =

1

4π

∫
∂D
∗F =

1

4π

∫
S∞
∗F . (4.87)

For the last equal sign we have chosen D to be all of 3d space.

Exercise: Calculate ∗d ∗ F to determine j. At arbitrary r this is a lengthy
calculation.

At large distance, r �M , r � a and r � Q one finds in terms of the orthornormal
triad (ēr̂ = ∂r, ēϑ̂ = r−1∂ϑ, ēϕ̂ = (r sinϑ)−1∂ϕ

Er̂ = Frt =
Q

r2
+O(r−3) , Eϑ̂ =

Fϑt
r

= O(r−4) , Eϕ̂ ∝ Fϕt = 0 (4.88)

Br̂ =
Fϑϕ

r2 sinϑ
=

2Qa

r3
cosϑ+O(r−4) , (4.89)

Bϑ̂ =
Fϕr
r sinϑ

=
2Qa

r3
sinϑ+O(r−4) , Bϕ̂ ∝ Fϑr = 0 . (4.90)
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The electric field is a Coulomb field with charge Q. The magnetic field is the field
of a magnetic dipole in ēz-direction with dipole moment

µ = Qa =
Q

M
J ≡ g

Q

2M
J with g = 2 . (4.91)

Surprisingly, a classical Kerr-Newman black hole has a magnetic g-factor g = 2
like a Dirac electron!

4.4.1 Static limit and stationary observers

We consider an observer moving on a world line with constant r and ϑ and uniform
angular velocity such that she sees an unchanging spacetime, i.e. a stationary
observer. Her angular velocity as measured from an observer at rest at infinity is

ω =
dϕ

dt
=
ϕ̇

ṫ
=
uϕ

ut
, (4.92)

where uµ is the 4-velocity of the observer. We suppose ω to be constant (i.e.
independent of time and of ϕ). As both, ∂t and ∂ϕ are Killing fields, u is then
proportional to a timelike Killing field,

u = ut (∂t + ω∂ϕ) =
b+ ωm

|b+ ωm|
, (4.93)

where
|b+ ωm| =

√
−〈b+ ωm, b+ ωm〉 .

Since u must be timelike,

gtt + 2ωgϕt + ω2gϕϕ < 0 . (4.94)

When the lefthand side of (4.94) vanishes u becomes lightlike. This happens when

ω =
−gϕt ±

√
g2
ϕt − gttgϕϕ

gϕϕ
. (4.95)

Setting

Ω = − gϕt
gϕϕ

= − 〈b,m〉
〈m,m〉

= a
2Mr −Q2

Σ2
, (4.96)

we find that ωmin < ω < ωmax with

ωmin = Ω−
√

Ω2 − gtt
gϕϕ

(4.97)

ωmax = Ω +

√
Ω2 − gtt

gϕϕ
. (4.98)
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For an interpretation of Ω consider stationary observers that are not rotating
wrt radially infalling test particles. Since the angular momentum of such test
particles vanishes, we have for these special stationary observers, so-called Bardeen
observers, 〈u,m〉 = 0, hence 〈b+ωm,m〉 = 0, i.e., ω = Ω. The velocity field of the
Bardeen observer is proportional to ξ = b+ Ωm . Note that

〈ξ, ξ〉 = −ρ
2∆

Σ
. (4.99)

Obviously ωmin = 0 if and only if gtt = 0, that is 〈b, b〉 = 0 which is equivalent to
ρ2 +Q2 − 2Mr = 0, hence

r = r±(ϑ) = M ±
√
M2 −Q2 − a2 cos2 ϑ . (4.100)

We shall always assume that M2 > Q2 +a2 since otherwise the metric has a naked
singularity as we shall see below (an exception is the case M = Q = 0 where, as
we have already seen, the spacetime is flat).

The surfaces {r = r±(ϑ)} are called the outer (+) and inner (−) ergosurface.

An observer is said to be static (relative to the ’fixed stars’) if ω = 0, so that u is
proportional to b. Static observers can exist only outside the static limit, i.e. for
r ≥ r+(ϑ) (or for r ≤ r−(ϑ)) where ωmin ≤ 0.

At the static limit, defined by the surface r = r+(ϑ), b becomes lightlike. An
observer would have to move at the speed of light in order to remain at rest with
respect to the fixed stars. But if the observer rotates, ω > 0, her 4-velocity need
not become lightlike at the static limit. This already indicates that the static limit
is not a horizon.

The redshift which an asymptotic observer measures for light emitted from a source
’at rest’ (u ∝ b) outside the static limit is

νe
νo

=

√
〈b, b〉0
〈b, b〉e

'

√
−1

〈b, b〉e
. (4.101)

This expression diverges at the static limit. Note that for a Schwarzschild black
hole the static limit coincides with the horizon.

Between the outer and the inner static limit, r+(ϑ) > r > r−(ϑ), ωmin > 0 hence
an observer must rotate. Inside the inner static limit, r < r−(ϑ), ωmin becomes
again negative such that ω = 0 is possible. However, such observers are not visible
from far away and their interpretation is not straight forward.
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4.4.2 The Killing horizon and the Ergosphere

For Ω2 = gtt/gϕϕ ≡ 〈b, b〉/〈m,m〉 we have ωmin = ωmax = Ω. On this surface there
is only one possible angular velocity for a stationary observer and it is the one of
the Bardeen observer. On this critical surface we have

gttgϕϕ − g2
tϕ = 0 or ∆ = r2 − 2Mr + a2 +Q2 = 0 . (4.102)

This equation is satisfied on the two hypersurfaces given by

SH± = {r = rH±} with rH± = M ±
√
M2 − a2 −Q2 . (4.103)

Here again, we need M2 ≥ a2 +Q2 for rH to exist. If this condition is not satisfied,
∆ > 0 for all r and the singularity at ρ = 0 can be seen from far away, i.e. it is
’naked’ (except if M = Q = 0).

We shall see that the surfaces SH± are Killing horizons. They are denoted the outer
(+) and the inner (−) horizon of the Kerr black hole. For an outside observer (i.e.
for all astrophysical observations) only the outer horizon is really relevant and we
shall concentrate on it in this discussion and we call it SH for simplicity. But all
can be repeated for the inner horizon.

On the hypersurface SH , Ω becomes

ΩH = − gϕt(rH , ϑ)

gϕϕ(rH , ϑ)
= a

2MrH −Q2

(r2
H + a2)2

=
a

r2
H + a2

. (4.104)

This is a very remarkable result: The black hole rotates like a rigid body on SH .
We have obtained this fact from the explicit formulas. In the Appendix we give a
general argument why ΩH has to be constant. Because of this, the vector field

` = b+ ΩHm (4.105)

is a Killing field. On the horizon this Killing field cöıncides with ξ and is light like,
〈`, `〉|r=rH = 0. Furthermore, the flow of ` leaves the horizon invariant. Indeed,
the horizon can be defined as 〈`, `〉 = 0 and since ` is a Killing field

L`〈`, `〉 = (L`g)(`, `)− 2〈[`, `], `〉 = 0 . (4.106)

For the Kerr solution we have seen that the following theorem holds. In the
Appendix we shall show that this is true for a generic axisymmetric, stationary
vacuum spacetime (This is a first step in the direction of the uniqueness theorem
for the Kerr-Newmann family of axisymmetric, stationary vacuum solutions which
we shall not demonstrate in this course.).
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Theorem 4.1 Weak Rigidity Theorem
Let (M, g) be a circular spacetime with commuting Killing fields b, m and set
ξ = b + Ωm with Ω = −〈b,m〉/〈m,m〉 . Then Ω is constant on the hypersurface
on which ξ is lightlike, Sξ = {〈ξ, ξ〉 = 0}, which we assume to exist. Moreover, Sξ
is a null hypersurface, invariant under the isometry group R× SO(2).

The surface Sξ is a Killing horizon in the sense of the following definition:

Definition 4.1 Killing horizon
Let k be a Killing field and Hk the set of points where k is null, and not identically
vanishing. A connected component of this set which is a null hypersurface, and
any union of such null surfaces is called a Killing horizon (generated by k).

Obviously Sξ ≡ H` ≡ SH and on SH the Killing field ` agrees with ξ. Any
hypersurface {〈`, `〉 = constant} is left invariant under the action of the symmetry
group R × SO(2). In particular the Killing field ` is a tangent null vector of
SH = H`.

We emphasize that the notion of a Killing horizon – in contrast to the one of the
event horizon – is of a local nature. It is natural to expect that the event horizon
of a stationary black hole is a Killing horizon. That this is indeed true has been
proven only relatively recently as part of a corrected version of the so-called ”strong
rigidity theorem”. In addition, this theorem states that k is either the stationary
Killing field (non-rotating black hole) or spacetime is axisymmetric (rotating black
hole). For a circular spacetimes the event horizon agrees with the Killing horizon
H`. This is Theorem 4.2. in [5].

Since a Killing horizon is a null hypersurface, the tangent space at each point is
orthogonal to a null vector, and therefore does not contain timelike vectors (see
Exercise at the end of this section). Moreover, the set of null vectors is one-
dimensional and spanned by any normal vector (same Exercise). In other words,
a Killing horizon is tangent to the light cone at each point. Therefore, crossing is
possible in only one direction. In the situation above ` is as a null vector tangent
to SH but also proportional to the normal vector field on SH , i.e.,

d〈`, `〉 = −2κ̃`[ . (4.107)

The proportionality factor κ̃ is called the surface gravity of the Killing horizon.
It plays an important role for black hole thermodynamics. Since ` is a Killing field
Eq. (4.107) implies (see prop. 1.15)

d〈`, `〉 = di``
[ = −i`d`[ = 2i`∇`b = −2∇``

[ = −2κ̃`[, (4.108)

hence
∇`` = κ̃` . (4.109)
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Equation (4.109) tells us that the integral curves of ` are non–affinely parame-
terized geodesics. (Exercise: Show that by an appropriate re-parametrization
these integral curves satisfy the standard geodesic equation.) These null geodesics
generate the Killing horizon.

With some tricks (see [16]) one can show that on the horizon, r = rH ,

κ(rH) = Gκ̃ =
G(rH −M)

r2
H + a2

=
G(rH −M)

2Mr2
H −Q2

. (4.110)

The static limit (outer ergosurface) is timelike, except at the poles, ϑ = 0 or π
which are critical points of m, where it agrees with the horizon which is null and
a normal vector to the static hypersurface, being orthogonal to the null vector b,
cannot be timelike. Therefore one can pass through the outer ergosurface in both
directions, in contrast to the Killing horizon. The region between the outer static
limit and the outer horizon is the so-called outer ergosphere (for reasons which
will be clarified below). The region between the inner static limit and the inner
horizon is the so-called inner ergosphere. The static limit and the horizon come
together at the poles, see Fig. 4.1). Inside the ergosphere, b is spacelike. This
implies that inside the ergosphere nothing can prevent on observer from rotating
about the black hole, any timelike velocity has ω > 0. The ergosphere disappears
when a→ 0.

Note that the inner ergosurface lies inside the inner horizon. Like the outer ergo-
surface it touches is at ϑ = 0 and π. At ϑ = π/2 it touches the ring singularity
r = 0, ϑ = π/2, i.e. x2 + y2 = a2. The ergosurfaces are given by gtt = 0 such that
b becomes light like. The horizon is given by grr = ∆/ρ = 0 so that the radial
gradient becomes lightlike, gµν∂µr ∂νr = 0, which is equivalent to the condition
that the surface {r = rH} is lightlike.

We add some remarks about Killing horizons for static spacetimes, for which the
stationary Killing field satisfies the Frobenius condition ωk = k∧dk = 0 (vanishing
twist ). Setting N ≡ 〈k, k〉 we have the following general identity for Killing fields
with vanishing twist (see proof below):

N〈dk[, dk[〉 = 〈dN, dN, 〉 . (4.111)

For such a Killing field k we can therefore conclude that dN is null on the surface
Sk = {N = 〈k, k〉 = 0}. In other words, for the non-degenerate case, dN 6= 0 the
hypersurface Sk is the Killing horizon Hk. In [5] (Theorem 4.1) it is shown that
the event horizon of a (non-degenerate) static black hole coincides with Hk.

To show Eq. (4.111) we consider that N = ikk
[ hence for a Killing field with

vanishing twist

Ndk[ + k[ ∧ dN = (ikk
[)dk[ + k[ ∧ d(ikk

[)
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Figure 4.1: Cross section through the axis of rotation of a Kerr solution (Q = 0
in the depicted case). The two ergosurfaces and the two horizons are indi-
cated together with the ergo regions (ergospheres) and the ring singularity (Fig-
ure from [13]). Here the coordinates drawn are x =

√
r2 + a2 sinϑ cosϕ, y =√

r2 + a2 sinϑ sinϕ, z = r cosϑ.

= (ikk
[)dk[ − k[ ∧ (ikdk

[)

= ik(k
[ ∧ dk[) = 0 hence

dk[ = − 1

N
k[ ∧ dN . (4.112)

For the fourth equal sign we used the vanishing twist condition. But

〈k[ ∧ dN, k[ ∧ dN〉 = 〈k, k〉〈dN, dN〉 − 〈k[, dN, 〉2 = 〈k, k〉〈dN, dN, 〉 . (4.113)

Here we have used that for a Killing field 0 = Lk〈k, k〉 = ikdN = 〈k[, dN〉 = 0.
Taking the scalar product of (4.112) with itself therefore gives Eq. (4.111).

Exercise Be V an n + 1-dimensional Minkowski vector space with inner product
denoted by 〈x, y〉 for x, y ∈ V . Show that the following facts hold:

i) Two timelike vectors are never orthogonal.
ii) A timelike vector is never orthogonal to a null vector.
iii) Two null vectors are orthogonal if and only if they are linearly dependent.
iv) The orthogonal complement of a null vector is an n-dimensional subspace of

V in which the inner product is positive semi-definite and degenerate with
rank n− 1.



Ruth Durrer General Relativity Chap. 4 89

4.4.3 Coordinate singularities and true singularities

At the horizon, ∆ = 0, the Kerr metric expressed in terms of the Boyer- Lindquist
coordinates appears singular. However, as in the case of the Schwarzschild solu-
tion, this is merely a coordinate singularity. This can be seen by transforming to
the so-called Kerr coordinates. These new coordinates are generalizations of the
Eddington-Finkelstein coordinates for spherically symmetric black holes and are
defined by

dṽ = dt+
r2 + a2

∆
dr (4.114)

dϕ̃ = dϕ+
a

∆
dr . (4.115)

The exterior differential of the rhs vanishes for both definitions, since ∆ is a func-
tion or r only, hence ṽ and ϕ̃ are fine coordinates. The Kerr metric can be written
in terms of the new coordinates (ṽ, r, ϑ, ϕ̃) as follows

ds2 = (4)gµνdx
µdxν = −

(
1− 2Mr −Q2

ρ2

)
dṽ2 + 2drdṽ + ρ2dϑ2

+
(r2 + a2)2 −∆a2 sin2 ϑ

ρ2
sin2 ϑdϕ̃2 − 2a sin2 ϑdϕ̃dr − 2a

2Mr −Q2

ρ2
dϕ̃dṽ . (4.116)

This expression is regular at the horizon (∆ = 0). Instead of ṽ one often also uses
t̃ = ṽ − r. In this coordinates the Killing fields are

b = (∂t̃)r,ϑ,ϕ̃ , m = (∂ϕ̃)t̃,r,ϑ , (4.117)

where the variables inicated as subscripts are the ones to be kept constant.

The Kerr-Newman metric has a true singularity which lies inside the horizon for
M2 > a2 +Q2.

Visualizing the spacetime geometry is made easier by considering the structure of
the light cones. We examine this more closely in the equatorial plane, ϑ = π/2.
as indicated in Fig. 4.2. Each point in this plane represents an integral curve of
the Killing field b. The wave fronts of light signals which have formed shortly after
being emitted from the marked points are also shown in Fig. 4.2. We note the
following facts:

a) Since b is timelike outside the outer ergosurface, the points of emission are
inside the wave fronts.

b) At the outer ergosurface b becomes lightlike, and the point of emission lies
thus on the wave front.
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Figure 4.2: We show the lightcones for the Kerr metric in the equatorial plane,
ϑ = π/2 where the distance between the horizon and the static limit, and therefore
the ergosphere is maximal and the inner ergosphere cöıncides with the singularity
r = 0. Here, the singularity at r = 0 is represented as a point in the center.
(Figure from [16])

c) Inside the ergosphere b is spacelike and hence the emitting points are outside
the wave fronts.

d) For r = rH , the Killing field b is still spacelike, furthermore, the wave fronts
arising from a point of emission on this surface lie entirely inside the surface,
except for touching points, because {r = rH} (i.e. {∆ = 0}) is a null surface.
This demonstrates that this surface is indeed an event horizon. This lightlike
hypersurface is invariant with respect to the flow of b and m (prove this!).

4.5 The Penrose process and black hole thermo-

dynamics

In this section we want to show that it is in principle possible to extract energy
out of a Kerr black hole. We shall study only Kerr black holes and set Q = 0 in
this section. This is not essential but simplifies the discussion somewhat. As we
shall see, energy extraction is possible as long as the angular momentum a is non-
vanishing. Physically the process is the following: We let a particle with energy
E fall behind the ergosurface of a Kerr black hole. There it disintegrates into 2
particles with energies E1 and E2 such that E = E1 +E2, and with momenta that
are such that e.g. E1 is ejected out of the ergosphere and E2 falls into the black
hole. We now show that it can happen that E2 < 0 so that E1 > E.

For this we first note that for a particle moving along a geodesic with 4-momentum
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p = mu, the energy E = −〈p, b〉 = −m(gttu
t+gtϕu

ϕ) = −pt is conserved. In a Kerr
spacetime gtt can change sign and hence this conserved energy can be negative.
This exactly what happens inside the ergosphere. However, far away this energy
the energy of a particle must necessarily be positive. Therefore, a particle entering
the ergosphere from far away necessarily has E > 0, however, a particle originating
within the ergosphere may well have E < 0.

Remark : As a side let us show the conservation of energy. More precisely we
show that for each Killing field of a metric, there exists a conserved quantity along
its geodesics. More precisely, if k is a Killing field and u a geodesic then 〈u, k〉 is
conserved along u. To see this we use that

∇u〈u, k〉 = 〈u,∇uk〉 = 〈u,∇ku〉+ 〈u, [u, k]〉 .

For the last equal sign we used ∇uk − ∇ku = [u, k]. Since 〈u, u〉 is constant,
〈u,∇uk〉 = ∇k〈u, u〉/2 = 0. Furthermore, [u, k] = −Lku. Using now that k is a
Killing field we have

0 = (Lkg)(u, u) = Lk(〈u, u〉)− 2〈u, Lku〉 .

As 〈u, u〉 ≡ −1, the first term on the rhs vanishes identically, hence also the second
term vanishes and

∇u〈u, k〉 = 0 .

To study in more detail when we may have E2 < 0 we write the Kerr metric as

ds2 = −e2νdt2 + e2ψ(dϕ− ωdt)2 + e2µ1dr2 + e2µ2dϑ2 . (4.118)

The inverse metric is

gtt = −e−2ν , gtϕ = −ωe−2ν , gϕϕ = e−2ψ − ω2e−2ν ,

grr = e−2µ1 , gϑϑ = e−2µ2 . (4.119)

We now consider a particle of mass m with 4-momentum p such that

−m2 = p2 = −e−2νp2
t − 2ωe−2νptpϕ +

(
e−2ψ − ω2e−2ν

)
(pϕ)2 + e−2µ1p2

r + e−2µ2(pϑ)2 .
(4.120)

Solving for the conserved energy E = −pt yields

E = ωpϕ + eν
[
e−2ψ(pϕ)2 + e−2µ1p2

r + e−2µ2(pϑ)2 +m2
]1/2

. (4.121)

The sign on the square root must be positive in order to allow E → m for a particle
at rest at infinity. We choose a > 0, hence ω > 0. If we want E < 0 we need
pϕ < 0 and

eν
[
e−2ψ(pϕ)2 + e−2µ1p2

r + e−2µ2(pϑ)2 +m2
]1/2

< −ωpϕ .
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This is best achieved if we choose the square root as small as possible, hence by
setting pr = pϑ = 0. In the limiting case of a highly relativistic particle, m� |pϕ|
this boils down to

e2(ν−ψ) < ω2 , (4.122)

which is equivalent to gtt > 0. Hence this can be achieved inside the ergosphere.

Let us now consider the amount of negative energy, −E2 = 〈p2, b〉 and angular
momentum L2 = 〈p2,m〉 the particle can carry into the black hole. For this we
make use of the fact that also 〈p2, `〉 is conserved since also ` is a Killing field.
Since ` is timelike in the ergosphere this quantity must be negative (see ex. on
p88), hence

0 > 〈p2, `〉 = −E2 + ΩHL2 , (4.123)

which yields the bound L2 < E2/ΩH . Especially since E2 < 0 also L2 < 0.

When the particle falls in the horizon, the conservation of the Komar integral
requests that δJ = L2 and δM = E2. Hence both, the mass and the angular
momentum of the black hole decrease. The bound (4.123) translates to

δM > ΩHδJ =
a

r2
H + a2

δJ . (4.124)

This result can be expressed in a more suggestive form making contact with ’black
hole thermodynamics’. For this we calculate the area of the Kerr horizon. On the
horizon the metric is

ds2 = (r2
H + a2 cos2 ϑ)dϑ2 +

(r2
H + a2)2 sin2 ϑ

(r2
H + a2 cos2 ϑ)

dϕ2 = αpqdθ
pdθq . (4.125)

The surface of the horizon is therefore

A =

∫ √
detαdϑdϕ =

∫
(r2
H + a2) sinϑdϑdϕ = 4π(r2

H + a2) = 4π
a

ΩH

. (4.126)

rH = M +
√
M2 − a2. We now introduce the so called ’irreducible mass’ as

M2
irr =

1

2

(
M2 +

√
M4 − J2

)
=

A

16π
, J = aM , M2 = M2

irr +

(
J

2Mirr

)2

,

(4.127)
which shows that the square of total energy/mass of the black hole can be split
into an ’irreducible part’ and a term that can be interpreted as rotational energy.
Note also that for a Schwarzschild black hole M = Mirr which also follows from
M2 = A/(16π) which is the area formula for Schwarzschild black holes.

Form (4.127) we can infer

δMirr =
a

4Mirr

√
M2 − a2

(
Ω−1
H δM − δJ

)
. (4.128)
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Hence (4.124) implies
δMirr > 0 , δA > 0 . (4.129)

The area of the horizon increases during the Penrose process. This result is actually
more general than our derivation: no classical physical process involving black holes
can decrease their total horizon area!

To make contact with black hole thermodynamics we write the bound on the
change in the area in a different form

δA = 8π
a

ΩH

√
M2 − a2

(δM − ΩHδJ) , (4.130)

or
δM =

κ

8πG
δA+ ΩHδJ , (4.131)

where we have inserted the surface gravity for Q = 0,

κ = κ(rH) =
G
√
M2 − a2

2M(M +
√
M2 − a2)

, (4.132)

see Eq. (4.110). In this form Eq. (4.131) has exactly the form of the second law of
thermodynamics where A/(4G) plays the role of the entropy (which is compatible
with δA > 0) and κ/(2πG) is acting as the ’temperature’. The term ΩHδJ/G is
the ’work’ exerted from the black hole and δM/G is the change of energy.

Exercise:

• Show that in units where c = kBoltzmann = 1, the quantity ~κ/G has the units
of a temperature. Calculate the temperature ~κ/(2πG) for a solar mass
Schwarzschild black hole in units of Kelvin.

• Show that in the same units ~−1A/4G is dimensionless. Determine also this
dimensionless entropy and compare it to the maximal entropy of photons
with total energy M/G enclosed in a box of size 2rH .

• Consider a Kerr black hole with a ∼ M/2 and M ∼ M�. Compare the
different terms in Eq. (4.131).
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Appendix A

The weak rigidity Theorem

Theorem A.1 Weak Rigidity Theorem
Let (M, g) be a circular spacetime with commuting Killing fields b, m and set
ξ = b + Ωm with Ω = −〈b,m〉/〈m,m〉 . Then Ω is constant on the hypersurface
on which ξ is lightlike, H = {〈ξ, ξ〉 = 0}, which we assume to exist. Moreover, H
is a null hypersurface, i.e. H is a Killing horizon, invariant under the isometry
group R× SO(2).

Proof: Clearly H is invariant under the isometry group since all the elements
used in its definition, b, m and the metric are. We first establish that H is a null
hypersurface. For this we introduce

σ = −1

2
〈b[ ∧m[, b[ ∧m[〉 = V X +W 2 = − detσab , (A.1)

where V = −σtt = −〈b, b〉, X = σϕϕ = 〈m,m〉 and W = σϕt = 〈m, b〉. Note that
the hypersurface H is defined by σ = 0. Intuitively it is clear that the hypersurfaces
{σ = const. } are invariant under the symmetry group R×SO(2) since the length
of both b and m are invariant. Formally this follows from

LbW = (Lbg)(b,m)− g(Lbb,m)− g(b, Lbm) = 0 , (A.2)

and in the same way LbX = LbV = LmW = LmX = LmV = 0. Hence the gradient
dσ] is perpendicular to b and m, in other words, dσ] ∈ E⊥, where E denotes the
tangent space of the surface H. Below we show that on H we also have dσ] ∈ E.
This implies that dσ]

∣∣
H
∈ E ∩E⊥ is null. This intersection is 1–dimensional on H

and dσ] must therefore be proportional to the null field ξ. Hence the normal dσ]

is null on H which proves that H is lightlike.

To show that dσ] ∈ E we now calculate it in detail.

dσ = 2WdW +XdV + V dX . (A.3)

95
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We use

dW = dibm
[ = −ibdm[ , W = −imdb[ , (A.4)

dX = −imdm[ , dV = ibdb
[ , (A.5)

so that
dσ = −W (ibdm

[ + imdb
[) +Xibdb

[ − V imdm[ . (A.6)

We now multiply this equation from the right with b[ ∧m[, and use the Frobenius
condition (4.2) to convert e.g. ibdm

[ ∧ (b[ ∧ m[) = dm[ ∧ (ibb
[m[ − b[ibm

[) =
dm[ ∧ (−V m[ −Wb[). Collecting the terms in the resulting equation we arrive at

dσ ∧ (b[ ∧m[) = σd(b[ ∧m[) . (A.7)

Especially on H this implies dσ ∧ (b[ ∧m[) = 0. We also use here that the group
action is such that b and m are linearly independent (span a 2-dimensional tangent
space). Then dσ] must be a linear combination of b and m which is null, hence it
must be proportional to ξ.

Next we want to show that Ω|H ≡ ΩH is constant. This follows with a similar
argument. We consider the gradient dΩ]. With the same considerations as for dσ]

it follows that dΩ] is perpendicular the b and m and hence dΩ] ∈ E⊥. On the
other hand,

dΩ = −d 〈b,m〉
〈m,m〉

= − 1

X
dW + ΩdX) =

1

X
iξm

[ . (A.8)

The same amnipulations which led to (A.7) now give

dΩ ∧ (b[ ∧m[) = − 1

X
〈ξ, ξ〉m[ ∧ dm[ , (A.9)

where, as above, we have used iξξ
[ = 〈ξ, ξ〉 and iξm

[ = 〈ξ,m〉 = 0 . But on H the
right hand side of (A.9) vanishes hence also dΩ] is a linear combination of b and
m, which implies that it is in E. Like for dσ], this implies dΩ] ∈ E⊥ ∩ E hence
dΩ] ∝ ξ so that H is a null–surface on which the function Ω is constant. 2
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