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Chapter 1

The expanding Universe

1.1 Homogeneity and Isotropy

I assume that you all are more or less familiar with General Relativity, i.e. that
you know what a metric is, what a geodesic is and how Christoffel symbols,
curvature and the Einstein tensor are defined. Einstein’s equations are

Gµν =
8πG

c4
Tµν + Λgµν , (1.1)

where Gµν(gµν , ∂αgµν , ∂α∂βgµν) is the Einstein tensor determined by the metric,
gµν and its derivatives, Tµν is the energy momentum tensor determined by the
matter content of the Universe, Λ is the cosmological constant and G is Newton’s
constant.

In cosmology we search for spatially homogeneous and isotropic solutions
of these equations. This means, in a first attempt we neglect the irregularities
of the matter distribution in the Universe and approximate it by a spatially
homogeneous and isotropic distribution. This is often called the ’cosmological
principle’: on large enough scales, the Universe looks the same in every position
and in all directions. In a second step we shall study fluctuation mainly within
linear perturbation theory. On sufficiently large scales this agrees surprisingly
well with observations as we shall see.

The first difficulty we encounter is how to define spatial homogeneity and
isotropy. For this we assume that the spacetime M admits a foliation into
3-manifolds with a timelike unit normal u, u2 = gµνu

µuν = −1. Since u is
hypersurface orthogonal it is proportional to the gradient of some function τ on
M which we call cosmic time, u = f∂τ . Since we assume spatial homogeneity
f cannot depend of the position on the hypersuface Στ hence it can at best be
a function of τ . We can get rid of this dependence by a simple redefinition of τ
such that u = ∂τ . This time coordinate is called cosmic time.

Spacetime is now of the form

M = Σ× I (1.2)

where I ⊂ R is an interval and Σ is a 3-manifold which we request to be
homogeneous and isotropic. More precisely, the isometry group of the metric
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Figure 1.1: A foliation of spacetime. The unit normal n is called u in the text.

induced on Σ, gΣ contains the rotations and translations. One can now show
that this implies that Σ is a space of constant curvature K with metric

gΣ = a2γijdx
idxj . (1.3)

The time dependence can be absorbed into the dependence of the scale factor
a(τ). One can choose coordinates on Σ such that γ takes one of the following
forms.

γijdx
idxj =

δijdx
idxj

(1 + K
4 ρ

2)2
(1.4)

γijdx
idxj = dr2 + χ2(r)

(
dθ2 + sin2(θ)dϕ2

)
(1.5)

γijdx
idxj =

dR2

1−KR2
+R2

(
dθ2 + sin2(θ)dϕ2

)
(1.6)

where in Eq. (1.4)

ρ2 =

3∑
i,j=1

δijx
ixj , and δij =

{
1 if i = j
0 else,

(1.7)

and in Eq. (1.5)

χ(r) =


r in the Euclidean case, K = 0

1√
K

sin(
√
Kr) in the spherical case, K > 0

1√
|K|

sinh(
√
|K|r) in the hyperbolic case, K < 0.

(1.8)

Often, one normalizes the scale factor such that K = ±1 whenever K 6= 0. One
has, however, to keep in mind that in this case r and K become dimensionless
and the scale factor a has the dimension of length. If K = 0 we can normalize a
arbitrarily. We shall usually normalize the scale factor such that a(τ0) = 1 and
the curvature is not dimensionless. Here and in the following, the subscript 0,
(if not denoting the component of a 4-vector) indicates the value of a quantity
at present time.
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Exercice 1 Coordinates
Find the coordinate transformation leading from the coordinates used in Eq. (1.5)
to those of Eq. (1.6) and finally to those of Eq. (1.4).

Instead of cosmic time τ we shall often also use conformal time t which is
defined by dt = dτ/a(τ). The 4d metric in cosmic and conformal time is given
by

ds2 = gµνdx
µdxν = −dτ2 + a2(τ)γijdx

idxj , (1.9)

= a2(t)
(
−dt2 + γijdx

idxj
)
. (1.10)

A spacetime with a metric of this form is called a Friedmann-Lemâıtre (FL)
universe.

Exercice 2 Cosmic flow

i) Using cosmic time, (1.9) compute the Christoffel symbols in terms of the
Christoffels of the spatial metric γij which we denote 3Γkij.

ii) Use the result of i) to show that the vector field u = ∂τ is a geodesic,

∇uu = 0, i.e. (∇uu)µ = uν∂νu
µ + Γµαβu

αuβ = 0 . (1.11)

1.2 The Friedman equations

A Universe with homogeneous and isotropic spatial sections is called a Friedmann-
Lemâıtre universe. Friedmann was the first to discuss these solutions of Ein-
stein’s equations and Lemâıtre was the first to interpret the observable Universe
as close to such a solution. (Later Robertson and Walker refined and extended
the discussion of homogeneous and isotropic geometries).

1.2.1 Derivation

Due to the symmetry of spacetime, the energy–momentum tensor can only be
of the form

(Tµν) =

(
−ρg00 0

0 Pgij

)
. (1.12)

There is no additional assumption going into this ansatz, such as the matter
content of the Universe being an ideal fluid. It is a simple consequence of
homogeneity and isotropy and is also verified for scalar field matter, a viscous
fluid or free-streaming particles in a FL universe. As usual, the energy density
ρ and the pressure P are defined as the time- and space-like eigenvalues of (Tµν ).

The Einstein tensor can be calculated from the definition (A.12) and Eqs. (A.31)—
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(A.38) given in the appendix,

G00 = 3

[(
a′

a

)2

+
K

a2

]
(cosmic time) (1.13)

Gij = −
(

2a′′a+ a′
2

+K
)
γij (cosmic time) (1.14)

G00 = 3

[(
ȧ

a

)2

+K

]
(conformal time) (1.15)

Gij = −
(

2

(
ȧ

a

)•
+

(
ȧ

a

)2

+K

)
γij (conformal time) . (1.16)

The Einstein equations relate the Einstein tensor to the energy–momentum
content of the Universe via Gµν = 8πGTµν − gµνΛ. Here Λ is the so called
cosmological constant. In a FL universe the Einstein equations become(

a′

a

)2

+
K

a2
=

8πG

3
ρ+

Λ

3
(cosmic time) (1.17)

2
a′′

a
+

(a′)2

a2
+
K

a2
= −8πGP + Λ (cosmic time) (1.18)(

ȧ

a

)2

+K =
8πG

3
a2ρ+

a2Λ

3
(conformal time) (1.19)

2

(
ȧ

a

)•
+

(
ȧ

a

)2

+K = −8πGa2P + a2Λ (conformal time) . (1.20)

Energy ‘conservation’, Tµν;µ = 0 yields

ρ̇ = −3(ρ+ P )

(
ȧ

a

)
or, equivalently ρ′ = −3(ρ+ P )

(
a′

a

)
. (1.21)

This equation can also be obtained by differentiating Eq. (1.17) or (1.19) and
inserting (1.18) or (1.20); it is a consequence of the contracted Bianchi identities.
Eqs. (1.17)—(1.20) are the Friedmann equations. The quantity

H(τ) ≡ a′

a
=

ȧ

a2
≡ Ha−1 (1.22)

is called the Hubble rate or the Hubble parameter, where H is the comoving
Hubble parameter. At present, the universe is expanding, so that H0 > 0. We
parameterize it by

H0 = 100h km/sec/Mpc ' 3.241× 10−18h sec−1 ' 1.081× 10−28h cm−1 .

For the last equation we set, as for the rest of this course,
the speed of light, c = 1.

Observations show that 0.66 < h < 0.75. More precisely, latest local observa-
tions from supernovae (see Section 1.3) give h = 0.7304±0.0104 [1], while param-
eter estimation from the cosmic microwave background give h = 0.674 ± 0.005
(assuming minimal neutrino masses) [2]. This discrepancy of about 5σ is called
the ’Hubble tension’.
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1.2.2 Some solutions

Eq. (1.21) is easily solved in the case w = P/ρ = constant. Then one finds

ρ = ρ0(a0/a)3(1+w) , (1.23)

where ρ0 and a0 denote the value of the energy density and the scale factor
at present time, τ0. For non-relativistic matter, Pm = 0, we therefore have
ρm ∝ a−3 while for radiation (or any kind of massless particles) Pr = ρr/3 and
hence ρr ∝ a−4. A cosmological constant corresponds to PΛ = −ρΛ and we
obtain, as expected ρΛ =constant. If the curvature K can be neglected and the
energy density is dominated by one component with w = constant, inserting
Eq. (1.23) into the Friedmann equations yields the solutions

K = 0 , w = const.

a ∝ τ2/3(1+w) ∝ t2/(1+3w) w = constant 6= −1 (1.24)

a ∝ τ2/3 ∝ t2 w = 0, (dust) (1.25)

a ∝ τ1/2 ∝ t w = 1/3, (radiation) (1.26)

a ∝ exp(Hτ) ∝ 1/|t| w = −1, (cosmol. const.) (1.27)

Exercice 3 Some solutions to the Friedmann equation
Using the Friedmann eqns. (1.17) and (1.19), verify solutions (1.24) to (1.27).

It is interesting to note that if w < −1, so-called ‘phantom matter’, we have
to choose τ < 0 to obtain an expanding universe and the scale factor diverges
in finite time, at τ = 0. This is the so-called ‘big rip’. Phantom matter has
many problems but it is discussed in connection with the supernova type 1a
(SN1a) data, which are compatible with an equation of state with w < −1 or
with an ordinary cosmological constant [3]. For w < −1/3 the time coordinate
t has to be chosen negative for the universe to expand and spacetime cannot be
continued beyond t = 0. But t = 0 corresponds to a cosmic time, the proper
time of a static observer, τ = ∞; this is not a singularity. (The geodesics can
be continued until affine parameter ∞.)

We also introduce the adiabatic sound speed cs determined by

c2s =
P ′

ρ′
=
Ṗ

ρ̇
. (1.28)

From this definition and Eq. (1.21) it is easy to see that

ẇ = 3H(1 + w)(w − c2s) . (1.29)

Hence w = constant if and only if w = c2s or w = −1. Note that already in a
simple mixture of matter and radiation w 6= c2s 6=constant.

Exercice 4 Matter and radiation mixture
Consider a FL universe containing a mixture of non-relativistic matter (dust)
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and radiation with vanishing curvature. The respective densities and pressures
are ρm, ρr and Pm = 0, Pr = ρr/3. We denote the ratio of radiation to matter
by R = ρr/ρm.

(a) Determine w and c2s as functions of R. What is the time dependence of
R?

(b) For a given redshift zeq � 1 of matter and radiation equality determine
the scale factor as a function of conformal and of physical time; normalize
the scale factor to 1 at equality, aeq = 1.

(c) Determine teq and τeq as functions of zeq, and H0.

(d) Express zeq in terms of Ωr and Ωm (today). Compute zeq, teq and τeq

numerically for Ωm = 0.3, Ωr = 8.51 × 10−5 and H0 = 70km/s/Mpc.
(You may neglect neutrino masses.)

Exercice 5 Cosmological constant
Investigate the dynamics of a FL universe with matter (P = 0) and a cosmo-
logical constant Λ.

(i) Show that for a sufficiently small cosmological constant and positive cur-
vature that the Universe re-collapses in a ‘big crunch’, while for a larger
cosmological constant or non-positive curvature, the Universe expands for-
ever.

(ii) Show furthermore that for an even higher cosmological constant there are
solutions which have no big bang in the past, but issue from a previous
contracting phase. The transition from the contracting to an expanding
phase is called the ‘bounce’.

(iii) Make a qualitative plot in the plane (Ωm,ΩΛ) distinguishing the regimes
determined above.

(iv) For case (ii), determine (numerically, with Mathematica) the redshift of
the bounce as a function of ΩΛ for fixed Ωm = 0.1. Discuss.

Eq. (1.17) implies that for a critical value of the energy density given by

ρ(τ) = ρc(τ) =
3H2

8πG
(1.30)

the curvature and the cosmological constant vanish. The value ρc is called
the critical density. The ratio ΩX = ρX/ρc is the ‘density parameter’ of the
component X. It indicates the fraction that the component X contributes to
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the expansion rate of the Universe. We shall make use especially of

Ωr ≡ Ωr(τ0) =
ρr(τ0)

ρc(τ0)
(1.31)

Ωm ≡ Ωm(τ0) =
ρm(τ0)

ρc(τ0)
(1.32)

ΩK ≡ ΩK(τ0) =
−K
a2

0H
2
0

(1.33)

ΩΛ ≡ ΩΛ(τ0) =
Λ

3H2
0

. (1.34)

(1.35)

1.2.3 The ‘big bang’ and ‘big crunch’ singularities

We can absorb the cosmological constant into the energy density and pressure
by redefining

ρeff = ρ+
Λ

8πG
, Peff = P − Λ

8πG
.

Since Λ is a constant and ρeff +Peff = ρ+P , the conservation equation (1.21) still
holds. A first interesting consequence of the Friedmann equations is obtained
when subtracting Eq. (1.17) from (1.18). This yields

a′′

a
= −4πG

3
(ρeff + 3Peff) . (1.36)

Hence if ρeff + 3Peff > 0, the Universe is decelerating. Furthermore, Eqs. (1.21)
and (1.36) then imply that in an expanding and decelerating Universe

ρ′eff

ρeff
< −2

a′

a
,

so that ρ decays faster than 1/a2. If the curvature is positive, K > 0, this implies
that at some time in the future, τmax, the density has dropped down to the
value of the curvature term, K/a2(τmax) = 8πGρeff(τmax). Then the Universe
stops expanding and recollapses. Furthermore, independent of curvature, as
a′ decreases the curve a(τ) is concave and thus cuts the a = 0 line at some
finite time in the past. This moment of time is called the ‘big bang’. The
spatial metric vanishes at this value of τ , which we usually choose to be τ = 0;
and spacetime cannot be continued to earlier times. This is not a coordinate
singularity. From the Ricci tensor given in Eqs. (A.31) and (A.32) one obtains
the Riemann scalar

R = 6

[
a′′

a
+

(
a′

a

)2

+
K

a2

]
,

which also diverges if a → 0. Also the energy density, which grows faster than
1/a2 as a→ 0 diverges at the big bang.

If the curvature K is positive, the Universe contracts after τ = τmax and,
since the graph a(τ) is convex, reaches a = 0 at some finite time τc, the time
of the ‘big crunch’. The big crunch is also a physical singularity beyond which
spacetime cannot be continued.
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It is important to note that this behavior of the scale factor can only be
implied if the so-called ‘strong energy condition’ holds, ρeff + 3Peff > 0. It is
illustrated in Fig. 1.2.

Figure 1.2: The kinematics of the scale factor in a Friedmann–Lemâıtre universe
which satisfies the strong energy condition, ρeff + 3Peff > 0.

1.3 Distances in cosmology

It is notoriously difficult to measure distances in the Universe. The position of
an object in the sky gives us its angular coordinates, but how far away is the
object from us? This problem has plagued cosmology for centuries. It was only
Hubble, who discovered around 1915–1920 that the ‘spiral nebulae’ are actually
not situated inside our own galaxy but much further away. This then led to the
discovery of the expansion of the Universe.

For cosmologically distant objects, a third coordinate, which is nowadays
relatively easy to obtain, is the redshift z experienced by the photons emitted
from the object. A given spectral line with intrinsic wavelength λ is redshifted
due to the expansion of the Universe. If it is emitted at some time τ , it reaches
us today with wavelength λ0 = λa0/a(τ) = (1+z)λ. This leads to the definition
of the cosmic redshift

z(τ) =
a0

a(τ)
− 1 . (1.37)

On the other hand, an object at physical distance d = a0r away from us, at
redshift z � 1, recedes with speed v = H0d. To the lowest order in z, we have
τ0 − τ ≈ d and a(τ) ≈ a0 + a′(τ0)(τ − τ0), so that

1 + z ≈ 1 +
a′(τ0)

a0
(τ0 − τ) ≈ 1 +H0d.

For objects that are sufficiently close, z � 1, we therefore have v ≈ z and hence
H0 = v/d. This is the method usually applied to measure the Hubble constant.
I requires measuring not only the redshift but also the distance to far away
objects.
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There are different ways to measure distances in cosmology all of which give
the same result in a Minkowski universe but differ in an expanding universe.
They are, however, simply related as we shall see.

One possibility is to define the distance DA to a certain object of given
physical size ∆ seen at redshift z1 such that the angle subtended by the object
is given by

ϑ = ∆/DA , DA = ∆/ϑ . (1.38)

This is the angular diameter distance or area distance, see Fig. 1.3.

Figure 1.3: The two ends of the object emit a flash simultaneously from A and
B at z1 which reaches us today. The angular diameter distance to A (or B) is
defined by DA = ∆/ϑ.

We now derive the expressions

DA(z) =
1√

|ΩK |H0(1 + z)
χ

(√
|ΩK |H0

∫ z

0

dz′

H(z′)

)
(1.39)

for the angular diameter distance to redshift z. In a given cosmological model,
this allows us to express the angular diameter distance for a given redshift as a
function of the cosmological parameters.

To derive (1.39) we use the coordinates introduced in (1.5). Without loss of
generality we set r = 0 at our position. We consider an object of physical size
∆ at redshift z1 simultaneously emitting a flash at both ends A and B. Hence
r = r1 = t0 − t1 at the position of the flashes, A and B at redshift z1. If ∆
denotes the physical arc length between A and B we have ∆ = a(t1)χ(r1)ϑ =
a(t1)χ(t0 − t1)ϑ, i.e.,

ϑ =
∆

a(t1)χ(t0 − t1)
. (1.40)

According to Eq. (1.38) the angular diameter distance to t1 or z1 is therefore
given by

a(t1)χ(t0 − t1) ≡ DA(z1) . (1.41)

To obtain an expression for DA(z) in terms of the cosmic density parameters
and the redshift, we have to calculate (t0 − t1)(z1).

Note that in the case K = 0 we can normalize the scale factor a as we
want, and it is convenient to choose a0 = 1, so that comoving scales become
physical scales today. However, for K 6= 0, we have already normalized a such
that K = ±1 and χ(r) = sin r or sinh r. In this case, we have no normalization
constant left and a0 has the dimension of a length. The present spatial curvature
of the Universe then is ±1/a2

0.
The Friedmann equation (1.19) reads

ȧ2 =
8πG

3
a4ρ+

1

3
Λa4 −Ka2, (1.42)
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where ȧ = da/dt. To be specific, we assume that ρ is a combination of dust,
cold, non-relativistic ‘matter’ of Pm = 0 and radiation of Pr = ρr/3.

Since ρr ∝ a−4 and ρm ∝ a−3, we can express the terms on the r.h.s. of
(1.42) as

8πG

3
a4ρ = H2

0

(
a4

0Ωr + Ωmaa
3
0

)
(1.43)

1

3
Λa4 = H2

0 ΩΛa
4 (1.44)

−Ka2 = H2
0 ΩKa

2a2
0 . (1.45)

The Friedmann equation then implies

da

dt
= H0a

2
0

(
Ωr +

a

a0
Ωm +

a4

a4
0

ΩΛ +
a2

a2
0

ΩK

) 1
2

(1.46)

so that

t0 − t1 =
1

H0a0

∫ z1

0

dz

[Ωr(z + 1)4 + Ωm(z + 1)3 + ΩΛ + ΩK(z + 1)2]
1
2

. (1.47)

Here we have used z + 1 = a0/a so that da = −dza0/(1 + z)2.
In principle, we could of course also add other matter components like, e.g.

‘quintessence’ [4], which would lead to a somewhat different form of the inte-
gral (1.47), but for definiteness, we remain with matter, radiation and a cosmo-
logical constant.

From −K
H2

0a
2
0

= ΩK we obtain H0a0 = 1√
|ΩK |

for ΩK 6= 0. The expression for

the angular diameter distance thus becomes

DA(z) =



1√
|ΩK |H0(z+1)

χ

(√
|ΩK |

∫ z
0

dz′

[Ωr(z′+1)4+Ωm(z′+1)3+ΩΛ+ΩK(z′+1)2]
1
2

)
if K 6= 0

1
H0(z+1)

∫ z
0

dz′

[Ωr(z′+1)4+Ωm(z′+1)3+ΩΛ]
1
2

if K = 0 .
(1.48)

Using again the Friedmann equation, this formula can also be written in the
form of Eq. (1.39).

In general, the above integral has to be solved numerically. It determines
the angle ϑ(∆, z) = ∆/DA(z) under which an object of size ∆ placed at redshift
z is seen (see Figs. 1.3 and 1.4).

If we are able to measure the redshifts and the angular extensions of a
certain class of objects at different redshifts, of which we know the intrinsic size
∆, comparing with Eq. (1.48) allows in principle to determine the parameters
Ωm, ΩΛ, ΩK and H0.

Observationally we know for certain that 10−5 < Ωr ≤ 10−4 as well as
0.1 ≤ Ωm<∼ 1, |ΩΛ|<∼ 1 and |ΩK |<∼ 1.

If we are interested in small redshifts, z1<∼ 10, we may therefore safely neglect
Ωr. In this region, Eq. (1.48) is very sensitive to ΩΛ and provides an excellent
mean to constrain the cosmological constant.



Ruth Durrer CMB 14

Figure 1.4: The function χ(t0 − t1) as a function of the redshift z for different
values of the cosmological parameters ΩK (left, with ΩΛ=0) and ΩΛ (right, with
ΩK=0), namely −0.8 (dotted), −0.3 (short-dashed), 0 (solid), 0.3 (dot-dashed),
0.8 (long-dashed).

At high redshift, z1>∼ 1000, neglecting radiation is no longer a good approx-
imation.

We shall later also need the opening angle of the horizon distance,

ϑH(z1) =
t1

χ(t0 − t1)
, (1.49)

t1 =
1

H0a0

∫ ∞
z1

dz

[Ωr(z + 1)4 + Ωm(z + 1)3 + ΩΛ + ΩK(z + 1)2]
1
2

.(1.50)

(Clearly this integral diverges if Ωr = Ωm = 0. This is exactly what happens
during an inflationary period and leads there to the solution of the horizon
problem.)

Neglecting Ωr, for ΩΛ = 0 and small curvature, 0 < |ΩK | < Ωm(1 + z1) at
high enough redshift, z1 ≥ 10, one has t0− t1 ' 2

√
|ΩK |/Ωm = 2/(H0a0

√
Ωm).

With χ(x) ' x which is valid for small curvature, this yields ϑ(∆, z1) '√
ΩmH0a0∆/(2a1) = 1

2

√
ΩmH0∆/(z1 + 1).

Another important distance measure in cosmology is the luminosity distance.
It is defined as follows. Let L be the luminosity (energy emitted per second)
of a source at redshift z1 and F its flux (energy received per second per square
centimetre) arriving at the observer position. We define the luminosity distance
to the source by

DL(z1) ≡
(

L

4πF

)1/2

. (1.51)

We now want to show that DL(z1) = (1 + z1)2DA(z1).
In a proper time interval of the emitter, dτ1 = a(t1)dt, the source emits the

energy La(t1)dt. This energy is redshifted by a factor (1 + z1)−1 = a(t1)/a(t0).
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Figure 1.5: ϑH(z1) (in degrees) for different values of the cosmological parame-
ters ΩK and ΩΛ the line styles are as in Fig. 1.4.

It is then distributed over a sphere with radius a(t0)χ(t0− t1). So that the flux
per proper time of the observer dτ0 = a(t0)dt becomes

F =
La2(t1)

4πa4(t0)χ2(t0 − t1)

leading to

DL(z1) =
a(t0)2

a(t1)
χ(t0 − t1) = (1 + z1)2DA(z1) . (1.52)

The luminosity distance hence contains two additional factors (1 + z) compared
to the angular diameter distance. One of them is due to the ’redshift’ of proper
time and the other is due to the redshift of photon energy.

A standard candle is a source of which the absolute luminosity is known
(usually from having observed such sources nearby where the distance is known
e.g. by paralax measurements or by other means). By measuring the flux
from standard candles, Eq. (1.51) allows to infer the luminosity distance DL(z).
The observation of hundreds of supernovae type Ia which are ’modified’ stan-
dard candles, has allowed during the last 20 years to infer that the Universe is
presently dominated by a cosmological constant Λ or some other form of dark
energy with w ∼ −1, see Figs. 1.6 and 1.7 .

1.4 The thermal history of the Universe

We assume that, at sufficiently early times, reaction rates for particle interac-
tions are much faster than the expansion rate, so that the cosmic fluid is in
thermal equilibrium. During its expansion, the Universe then cools adiabat-
ically. At early times, it is dominated by a relativistic radiation background
with

ρ = C/a4 =
geff

2
aSBT

4 . (1.53)

This behaviour implies that T ∝ a−1. Here geff is the effective number of degrees
of freedom, which we define below and aSB is the Stefan–Boltzmann constant,
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Figure 1.6: The Pantheon+ data, Brout et al.. (2022) (top).
The resulting acceleration of the Universe, Huterer and Shafer (2018) (bottom).
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Figure 1.7: Left: The observationally preferred values from ΩΛ and Ωm from
type Ia Supernovae (blue) baryon acoustic oscillations (green) and the CMB
(orange), from Suzuki et al. (2011) .
Right: The same result (plotting Ωm vertically and ΩK = 1 − Ωm − ΩΛ hori-
zontally) without SN data from the more recent Planck satellite (2018) [2].
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aSB = π2/15 in our units (~ = kB = c = 1). For massless (or extremely
relativistic) fermions and bosons in thermal equilibrium at temperature T with
Nb respectively Nf spin degrees of freedom we have

ρb =
Nb4π

(2π)3

∫ ∞
0

p3 dp

exp(p/T )− 1
=
NbT

4

2π2

∫ ∞
0

x3 dx

exp(x)− 1

=
NbT

4

2π2
Γ(4)ζ(4) =

NbT
4π2

30
, (1.54)

ρf =
Nf4π

(2π)3

∫ ∞
0

p3 dp

exp(p/T ) + 1
=
NfT

4

2π2

∫ ∞
0

x3 dx

exp(x) + 1

=
NfT

4

2π2
Γ(4)ζ(4)

7

8
=

7

8

NfT
4π2

30
, (1.55)

where Γ denotes the Gamma-function and ζ is the Riemann zeta-function and
we make use of the integrals [5]

Ib(α) =

∫ ∞
0

xα dx

exp(x)− 1
= Γ(α+ 1)ζ(α+ 1) , (1.56)

If (α) =

∫ ∞
0

xα dx

exp(x) + 1
=

[
1−

(
1

2

)α]
Γ(α+ 1)ζ(α+ 1) . (1.57)

Furthermore, ζ(2) = π2/6, ζ(4) = π4/90, and Γ(n) = (n− 1)! for n ∈ N, see [6].
Hence ρ = ρb + ρf = geff

2 aSBT
4 for aSB = π2k4

B/(15 ~3c2) = π2/15 and
geff = Nb + 7/8Nf , if all the particles are at the same temperature T . If the
temperatures are different, like e.g., the neutrino temperature after electron–
positron annihilation as we shall see below, this has to be taken into account
with a factor (Tν/Tγ)4 multiplying Nν in geff .

At temperatures below the electron mass, T < me ∼ 0.5 MeV only neutrinos
and photons are still relativistic. Very recently, T <∼ 0.05 eV ∼ 580K at least
some of the neutrinos also become non-relativistic so that the density parameter
of relativistic particles today is probably given only by the photon density1,

Ωrel = Ωγ =
8πG

3H2
0

aSBT
4
0 = 2.49× 10−5h−2 . (1.58)

Here we have set T0 = 2.725 K (see [8]).
The pressure of relativistic particles is given by P = T ii /3 = ρ/3. The

thermodynamic relation dE = T dS − P dV therefore gives for the entropy
density s = dS/dV

s =
dS

dV
=

1

T

(
dE

dV
+ P

)
=
ρ+ P

T
=

4ρ

3T
. (1.59)

Using the expression for the energy density (1.54) and (1.55) this gives for each
particle species X

sX =


2π2

45 NXT
3 for bosons ,

7π2

180NXT
3 for fermions .

(1.60)

1At present only neutrino mass differences are known from oscillation experiments. The
lowest neutrino mass could still be zero or at least lower than T0. From oscillation experiments,
however, we know that the heaviest neutrino mass is at least 0.05eV (see [7]).
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The particle density for relativistic particles is given by

nX =
NX
2π2

∫
p2

exp(p/T )± 1
dp =

{
T 3NX

π2 ζ(3) for bosons ,

T 3NX
π2 ζ(3) 3

4 for fermions .
(1.61)

The particle and entropy densities both scale like T 3. Using ζ(3) ' 1.202 057
we obtain

sX '
{

3.6 · nX for bosons ,
4.2 · nX for fermions .

(1.62)

The photons obey a Planck distribution (ε = ap = the photon energy),

f(ε) =
1

eε/T − 1
. (1.63)

1.4.1 Recombination

At a temperature of about T ∼ 4000 K ∼ 0.4 eV, the number density of photons
with energies above the hydrogen ionization energy (= ∆ = 1 Ry = 13.6 eV)
drops below the baryon density of the Universe, and the protons begin to
(re)combine to neutral hydrogen. Even though electrons and protons where
not combined to neutral hydrogen before, this process is called ’recombination’
rather than ’combination’.

Helium has already recombined earlier. The binding energy of the first
electron to the He nucleus is 4∆ = 54.4eV. The recombination of the first
electron He+2 → He+, takes place at T2→1 ' 1.4×104K. The binding energy of
the second electron to the He nucleus is 24.6eV and, a the transition He+ → He
takes place at T1→0 ' 0.5 × 104K (see [9] where this temperatures are derived
using the Saha equation).

Photons and baryons are tightly coupled before (re)combination by Thomson
scattering of electrons. During recombination the free electron density drops
sharply and the mean free path of the photons grows larger than the Hubble
scale. At the temperature Tdec ∼ 3000 K (corresponding to the redshift zdec '
1100 and the physical time τdec ' adectdec ' 105 yr) photons decouple from the
electrons and the Universe becomes transparent.

The process of recombination happens quite rapidly and leaves the photon
distribution virtually unchanged. After that, it is modified only by the redshift
of the photon momenta. Therefore, scaling the ’temperature’ in the distribution
function like T ∝ 1/a, it remains a Planck distribution even if the function T (a)
not longer represents a thermodynamical temperature but rather a parameter
of the distribution function. These photons are redshifted at the present day
to T0 = 2.728K, see Fig. 1.8. The thermal photons represent what we call the
’Cosmic Microwave Background (CMB). No deviation from a thermal spectrum
is found until today. For examples the limits on a possible chemical potential
or a Compton y parameter are

|µ| < 9× 10−5, |y| < 1.2× 10−5. (1.64)

The CMB photons not only have a very thermal spectrum, but they are
also distributed very isotropically, apart from a dipole which is (most probably)
mainly due to our motion relative to the surface of last scattering.
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Figure 1.8: The spectrum of the cosmic background radiation. Iν is the energy
flux per frequency. The data are from many different measurements which are
all compiled in [10]. The points around the top are the measurements from the
FIRAS experiment on COBE [11]. The line traces a blackbody spectrum at a
temperature of 2.728 K .

Indeed, an observer moving with velocity v relative to a source in direction n
emitting a photon with proper momentum p = −εn sees this photon redshifted
with frequency

ε′ = γε (1− nv) , (1.65)

where γ = 1/
√

1− v2 is the relativistic γ-factor. For an isotropic emission of
photons coming from all directions n this leads to a dipole anisotropy to first
order in v. This dipole anisotropy, which is of the order of

(
∆T

T

)
dipole

' 1.2× 10−3 ,

has already been discovered in the seventies. Interpreting it as due to our motion
with respect to the last scattering surface implies a velocity for the solar system
barycentre of v = 369± 0.9 km s−1 at 68% CL ([12]).

In addition to this ’local’ term, small fluctuations of the CMB which we
discuss in detail in Chapter 3. Their theoretical study and experimental mea-
surement has led to the best determination of cosmological parameters and can
be called the ’success story of modern cosmology’.

For more details and the calculation of the remaining reionisation fraction
see [9].
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1.4.2 Nucleosynthesis and neutrino decoupling

At high temperatures, T > 30 MeV, none of the light nuclei (deuterium, 2H,
helium-4, 4He, helium-3, 3He or lithium, 7Li) are stable. At these temperatures,
we expect the baryons to form a simple mixture of protons and neutrons in ther-
mal equilibrium with each other and with electrons, photons and neutrinos. The
highest binding energy is the one of 4He which is about 28 MeV. Nevertheless,
4He cannot form at this temperature since the baryon density of the Universe
is not high enough for three- or even four-body interactions to occur in thermal
equilibrium. Therefore, before any nucleosynthesis can occur, the temperature
has to drop below the binding energy of deuterium which is about 2.2 MeV.
But even at this temperature there are still far too many high-energy photons
around for deuterium to be stable. This is due to the very low baryon to photon
ratio ηB ≡ nB/nγ ' 10−10. Just as recombination is delayed from the naively
expected temperature T = 13.7 eV to about Trec ∼ 0.3 eV, nucleosynthesis does
not happen at T ∼ 2.2 MeV but around Tnuc ∼ 0.1 MeV. Most of the neutrons
present at that temperature are converted into 4He. Only small traces remain as
deuterium or are burned into 3He and 7Li. The number of neutrons present at
this temperature depends on the time at which β and inverse β decay drop out
of equilibrium. This happens when the corresponding reaction rate Γβ equals
the expansion rate H,

Γβ(t) = H(t) .

Hence this depends strongly on the expansion rate which in turn is given by the
energy density,

ρ = ρrel(t) = [ργ(t) + ρν(t)] =

[
1 +Nν

7

8
(4/11)4/3

]
π2

15
T 4 , (1.66)

where Nν is the number of neutrino species, 3 in the standard model of particle
physics (the factor (4/11)4/3 is explained below). For this reason, the helium
abundance, which is about YHe ' 25%, depends on the number of neutrino
families. Or more precisely on the number of light (m < 1MeV) particles with
thermal abundance. We do not present the calculation of YHe in detail here, it
can be found in the literature, see e.g. [13, 9].

As a simple example we study the dropout of thermal equilibrium of neutri-
nos in some more detail. At the time of recombination, the relativistic particle
species are the photon and, probably, three types of neutrinos. As we shall
see, the neutrino temperature is actually a factor of (4/11)1/3 lower than the
temperature of the photons. With Eqs. (1.54) and (1.55), the energy density of
these particles while they are relativistic is then given by

ρrel(t) = [ργ(t) + ρν(t)] =

[
1 + 3

7

8
(4/11)4/3

]
π2

15
T 4 , (1.67)

' 10−33 g cm−3

(
T

T0

)4

, (1.68)

' ρc(t0)Ωrelh
2(1 + z)4 , where

Ωrelh
2 ' 4.4× 10−5 . (1.69)

Note that at temperatures below the highest neutrino mass, this is no longer the
energy density of relativistic particles, therefore Ωrel is not the density parameter
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of relativistic particles today. Above the neutrino mass threshold and below the
electron mass threshold we have

ρrel

ρm
=

Ωrel

Ωm
(1 + z) ' 4.4× 10−5

(
1

Ωmh2

)
(1 + z) , (1.70)

Since Ωmh
2 ' 0.14, the redshift zeq above which the Universe is dominated by

relativistic particles is about

zeq ' 3.2× 103 , Teq ' 1 eV . (1.71)

At temperatures significantly above Teq, we can also neglect a possible contribu-
tion from curvature or a cosmological constant to the expansion of the Universe,
so that for

z � zeq P =
1

3
ρ , a ∝ τ1/2 ∝ t . (1.72)

At these high temperatures the energy density of the Universe is given by

ρ = geff
π2

30
T 4 where geff = NB(T ) +

7

8
NF (T ) . (1.73)

Here, NB and NF denote the number of bosonic and fermionic degrees of free-
dom of relativistic particles (i.e. particles with mass m < T ) which are in
thermal equilibrium at temperature T .

To discuss the physical processes at work at some temperature T , we need
to know the spectrum of relativistic particles and their interactions at this tem-
perature. Here, we shall study the Universe at 10 keV < T < 100 MeV where
the physics is well known. The only relativistic particles present at these tem-
peratures are electrons, positrons, photons and three types of neutrinos. (The
muons have a mass of mµ ' 105.66MeV. We neglect the small contribution from
muon/anti-muon pairs which decay exponentially ∝ exp(−mµ/T ) via the reac-
tion µ+ ν̄µ → e+ ν̄e .) Even if the individual neutrino masses are not very well
constrained, the oscillation experiments [14] imply that their masses are below
1 eV if there is no degeneracy. As we shall see later, also CMB data estimate
masses below this value. Therefore, we may neglect the neutrino masses in our
treatment. The baryon number is well conserved at these temperatures, so that
we may set ηB equal to its present value, ηB = nB/nγ ' 2.7 × 10−8ΩBh

2 =
constant.

Due to the neutrality of the Universe, the difference between the electron
number and positron number is determined by the proton number which is
given by np ∼ ηBnγ ∼ 10−10nγ . Therefore the electron and positron chemical
potential is very small. We assume that also the neutrino chemical potential
can be neglected, but this assumption is not based on observations. At 1MeV<
T < 100MeV the relativistic particles are the photons, neutrinos electrons and
positrons with so that NB = 2 and NF = 4 + 6, hence

geff(T ∼ 100 MeV) =
43

4
= 10.75 . (1.74)

The Hubble parameter is given by(
a′

a

)2

= H2 =
1

4τ2
=

8πG

3
ρ =

8π3G

90
geffT

4 .
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With the Planck mass, mP defined by G = 1/m2
P = 1/(1.22 × 1019 GeV)2, we

find

H2(T ) ' 2.76geff(T )

(
T 2

mP

)2

, (1.75)

H ' 0.21
√
geff

(
T

1 MeV

)2

s−1 , (1.76)

τ =
1

2H
' 0.3geff(T )−1/2

(mP

T 2

)
' 2.4 s

(
1 MeV

T

)2

g
−1/2
eff . (1.77)

For c = ~ = 1, MeV’s have the same units as mass or momentum which then
is the inverse unit of length or time. Converting MeV to seconds−1 we obtain
1MeV= 1.5192× 1021s−1. The temperature of T ∼ 100 MeV corresponds thus
to an age of τ ∼ 7 × 10−5 s, and T = 1 MeV corresponds to τ ∼ 0.7 s. The
relations (1.76) and (1.77) can be applied as long as the Universe is dominated
by relativistic particles.

Neutrinos are kept in thermal equilibrium via the exchange of a W -boson,
e + ν̄ ←→ e + ν̄ and ν + ē ←→ ν + ē, or a Z-boson, e + ē ←→ ν + ν̄. At low
energies E � mZ,W ∼ 100 GeV, we can determine the cross sections within the
4-fermion theory of weak interaction. The cross section of the different processes
above are identical within this approximation and they are given by

σF ' G2
FE

2 ∼ G2
FT

2 ,

where the coupling parameter, GF is the Fermi constant,

GF = 1.166× 10−5 GeV−2 = (293 GeV)−2. (1.78)

The involved particle density is nF (T ) = gF (T )ζ(3)T 3/π2 ∼ 1.3T 3 where we
have set gF (T ) = 3/4NF (T ) = 30/4 for the three types of left-handed neutrinos
and the e± s. Since the particles are relativistic, we can set v ∼ 1 so that we
obtain an interaction rate of

ΓF = 〈σF v〉nF ' 1.3G2
FT

5 .

Comparing this with the expansion rate H obtained in (1.75), we find

ΓF
H
' 0.24T 3mPG

2
F '

(
T

1.4 MeV

)3

. (1.79)

At temperatures below TF ∼ 1.4 MeV the probability for a neutrino to interact
within one Hubble time, H−1, becomes less than unity and the neutrinos ef-
fectively decouple. The plasma becomes transparent to neutrinos which are no
longer in thermal equilibrium with electrons and positrons and hence photons
and baryons.

Even at temperatures far below their mass mν >∼ 0.05 eV, their particle dis-
tribution remains an extremely relativistic Fermi–Dirac distribution with tem-
perature

Tν = TF
aF
a

,

since they are no longer in thermal equilibrium and their distribution is affected
solely by redshifting of the momenta.
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As long as the photon/electron/baryon temperature also scales like 1/a, the
neutrinos conserve the same temperature as the thermal plasma, but when the
number of degrees of freedom, geff , changes, the plasma temperature decays
for a brief period of time less rapidly than 1/a and therefore remains higher
than the neutrino temperature. This is exactly what happens at the electron–
positron mass threshold, T = me ' 0.5 MeV. Below that temperature, only the
process e + ē → 2γ remains in equilibrium while 2γ → e + ē is exponentially
suppressed. We calculate the reheating of the photons gas by electron–positron
annihilation assuming that the process takes place in thermal equilibrium and
that the entropy remains unchanged. This is well justified since the cross section
of this process is very high. Denoting the entropy inside a volume of size V a3

before and after electron–positron annihilation by Si and Sf we therefore have
Si = Sf . With (1.59) this yields

Si =
2

3
aSBgeff,i(Ta)3

iV, Sf =
2

3
aSBgeff,f (Ta)3

fV .

The electron–positron degrees of freedom disappear in this process so that
geff,f = 2 while geff,i = 2 + 4( 7

8 ) = 11/2. From Si = Sf we therefore conclude

(Ta)f = (Ta)i

(
11

4

)1/3

.

The neutrino temperature is not affected by e± annihilation, so that (Tνa)f =
(Tνa)i = (Ta)i. For the last equals sign we have used that the neutrino and
photon temperatures are equal before e± annihilation. At temperatures T � me

we therefore have

T =

(
11

4

)1/3

Tν . (1.80)

Since there are no further annihilation processes, this relation remains valid
until today and the present Universe not only contains a thermal distribution
of photons, but also a background of cosmic neutrinos which have an extremely
relativistic Fermi–Dirac distribution with temperature

Tν(τ0) = (4/11)1/3T0 = 1.95 K . (1.81)

We set

g0 = 2 +
7

8
6

(
4

11

)4/3

' 3.36 , and (1.82)

g0S = 2 +
7

8
6

(
4

11

)
' 3.91 . (1.83)

These are respectively the effective degrees of freedom of the energy and entropy
densities as long as all the neutrinos are relativistic. Until then we therefore
have

ρrel(T ) =
π2

30
g0T

4 ' 8.1× 10−34 g cm−3

(
T

T0

)4

, (1.84)

s(T ) =
2π2

45
g0ST

3 ' 3× 103 cm−3

(
T

T0

)3

. (1.85)

The neutrino cross section at low energies is extremely weak, and so far the
neutrino background has not been observed directly.
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Exercice 6 The neutrino background
Determine the neutrino cross section for the reaction e− + ν̄ → e− + ν̄ at
energy Eν = Tν(t0). Compare it with the cross section of the neutrinos de-
tected in the super-Kamiokande experiment, assuming a solar neutrino flux of
F = 109cm−2s−1 at a neutrino energy ∼ 1MeV. Keeping the efficiency of super-
Kamiokande, how large (roughly) a water tank would you need to detect neutri-
nos from the cosmic neutrino background?

1.4.3 Phase transitions in the early Universe

At even higher temperatures other physical processes take place. For example
at T = TQCD ' 100MeV the chiral transition takes place. The quarks gluon
plasma which previously permeated the Universe confines into hadrons, protons
and neutrons. At T = TEW ' 200GeV the Higgs becomes massive and the
electroweak transition takes place. Lattice calculations have shown that within
the standard model, both these transitions are cross-overs and not phase tran-
sitions. This makes it difficult to think of any possible observational signature,
’cosmic fossils’ of these events. However, if neutrinos have a relatively large
chemical potential or if there are deviations from the standard model, e.g. a
second Higgs or SUSY, one or the other of these transitions can become a first
order phase transition. A first order phase transition would also be required to
generate a baryon or lepton asymmetry from a symmetric initial state. Further-
more, physics beyond the standard model is needed to provide the dark matter
or to solve the hierarchy problem.

It is therefore not improbable to postulate that during its expansion and
cooling by many orders of magnitude, the Universe underwent a first order
phase transition and to study the ’fossils’ of such a transition. These can be

• Topological defects (cosmic strings, global monopoles or textures) [15],

• Primordial black holes [16],

• Gravitational waves [17],

• Cosmic magnetic fields [17].

Quite some theoretical studies are devoted to these possibilities, but so far not
observational evidence has been found.



Chapter 2

Linear perturbation theory

2.1 Basic perturbation equations

The fluctuations in the CMB are small. It is therefore justified to calculate them
with perturbation theory. Nearly all the observational results for the CMB are
in perfect agreement with linear and second order perturbation theory. We first
give a brief introduction to linear cosmological perturbation theory.

The first attempt to relativistic cosmological perturbation theory was un-
dertaken by Lifshitz (1946) [18]. There he found that the gravitational potential
cannot grow within linear perturbation theory in an FL universe and he con-
cluded that galaxies cannot have formed by gravitational instability.

Today we know that in order to form structures it is sufficient that matter
density fluctuations can grow. Nevertheless, considerable initial fluctuations
with amplitudes of the order of 10−5 are needed in order to reproduce the
cosmic structures observed today. These are much larger than typical statistical
fluctuations on scales of galaxies and we need an additional mechanism, like
inflation, to generate them.

2.1.1 Gauge transformation, gauge invariance

The observed Universe is not perfectly homogeneous and isotropic. Matter is
arranged in galaxies and clusters of galaxies and there are large voids in the
distribution of galaxies. Let us assume, however, that these inhomogeneities
grew out of small initial variations of the geometry and of the energy–momentum
tensor which we shall study at first-order in perturbation theory. For this we
define the perturbed geometry by

gµν = ḡµν + εa2hµν , (2.1)

ḡµν being the unperturbed Friedmann metric defined in the previous chapter.
We conventionally set (absorbing the ‘smallness’ parameter ε into hµν)

gµν = ḡµν + a2hµν , ḡ00 = −a2 , ḡij = a2γij , |hµν | � 1 ,

Tµν = T
µ

ν + θµν , T
0

0 = −ρ̄ , T
i

j = P̄ δij , |θµν |/ρ̄� 1 .
(2.2)

The first fundamental problem we want to discuss is the choice of gauge in
cosmological perturbation theory.

26
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For linear perturbation theory to apply, the spacetime manifoldM with met-
ric g and the energy–momentum tensor T of the real, observable Universe must
be in some sense close to a FL universe, i.e. the manifoldM with a Robertson–
Walker metric ḡ and a homogeneous and isotropic energy–momentum tensor T .
It is an interesting, non-trivial unsolved problem how to construct ‘the best’ ḡ
and T from the physical fields g and T in practice. There are two main difficul-
ties: first, spatial averaging procedures depend on the choice of a hypersurface of
constant time and they do not commute with derivatives, so that averaged fields
ḡ and T will, in general, not satisfy Einstein’s equations. Second, averaging is
in practice impossible over super-horizon scales.

Even though we cannot give a constructive prescription of how to define the
nearly homogeneous and isotropic spatial slices from the physical spacetime, or
the spatially averaged metric and energy–momentum tensor, we now assume
that there exists an averaging procedure which leads to a FL universe with
spatially averaged tensor fields S, such that the deviations are small,

|Tµν − Tµν |
max{αβ}{|Tαβ |}

� 1 and
|gµν − gµν |

max{αβ}{gαβ}
� 1,

and where ḡ and T satisfy Friedmann’s equations. The latter condition can be
achieved, e.g., by defining T via the Friedmann equations. Let us call such an
averaging procedure ‘admissible’. There may be many different admissible aver-
aging procedures (e.g., over different hypersurfaces) leading to slightly different
FL backgrounds.

But since |g− ḡ| is small of order ε, the difference of the two FL backgrounds
must also be small of order ε and we can interpret it as part of the perturbation.

We now consider a fixed admissible FL background (ḡ, T ) as chosen. Since
the theory is invariant under diffeomorphisms (coordinate transformations), the
perturbations are not unique. For an arbitrary diffeomorphism φ and its push
forward φ∗, the two metrics g and φ∗(g) describe the same geometry. Since
we have chosen the background metric ḡ we only allow diffeomorphisms which
leave ḡ invariant i.e. which deviate only at first order from the identity. Such
an ‘infinitesimal’ diffeomorphism can be represented as the infinitesimal flow
of a vector field X, φ = φXε . Remember the definition of the flow: for the
integral curve, γx(s), of X with starting point x, i.e. γx(s = 0) = x we have
φXs (x) = γx(s). In terms of the vector field X, to first order in ε, its push
forward is then of the form

φ∗ = id+ εLX +O(ε2) ,

where LX denotes the Lie derivative in direction X (see Appendix A.2). The
transformation g → φ∗(g) is equivalent to ḡ+εa2h→ ḡ+ε(a2h+LX ḡ)+O(ε2).
Under an ‘infinitesimal coordinate transformation’ the metric perturbation h
therefore transforms as

h 7→ h+ a−2LX ḡ . (2.3)

In the context of cosmological perturbation theory, infinitesimal coordinate
transformations are called ‘gauge transformations’. The perturbation of an ar-
bitrary tensor field S = S̄ + εS(1) obeys the gauge transformation law

S(1) 7→ S(1) + LX S̄ . (2.4)
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Since every vector field X generates a gauge transformation φ = φXε , we can
conclude that only perturbations of tensor fields with LXS = 0 for all vector
fields X, i.e. with vanishing (or constant) ‘background contribution’ are gauge
invariant. This result is called the ‘Stewart–Walker Lemma’ [19].

The gauge dependence of perturbations has caused many controversies in
the literature, since it is often difficult to extract the physical meaning of
gauge-dependent perturbations, especially on super-horizon scales. This prob-
lem is solved by gauge-invariant perturbation theory which we are going to use
throughout. The advantage of the gauge-invariant formalism is that the vari-
ables used have simple geometric and physical meanings and are not plagued by
gauge modes. Although the derivation requires somewhat more work, the final
system of perturbation equations is usually simple and well suited for numerical
treatment. We shall also see, that on subhorizon scales, the gauge-invariant
matter perturbation variables approach the usual, gauge-dependent ones. Since
one of the gauge-invariant geometrical perturbation variables corresponds to the
Newtonian potential, the Newtonian limit can be performed easily.

First we note that all relativistic equations are covariant and can therefore be
written in the form S = 0 for some tensor field S. The corresponding background
equation is S = 0, hence S(1) is gauge invariant. It is thus always possible to
express the corresponding perturbation equations in terms of gauge-invariant
variables.

2.1.2 Perturbation variables

It is useful to decompose perturbations into components which transform irre-
ducibly under the symmetry group of the background. In our case these are
translations and rotations. For simplicity I only present the case K = 0, but
K 6= 0 is not very different apart from technicalities. The irreducible repre-
sentations of the translation group are the Fourier modes. Vectors and tensors
can be further decomposed into helicity 0, 1 and 2 components. We define the
Fourier decomposition of a function by

f(x, t) =
1

(2π)3

∫
d3k f(k, t) e−ikx . (2.5)

The spin decomposition of a spatial vector field is a decomposition into a gra-
dient and a curl. For the Fourier components we set

Vj = ik̂jV
(S) + V

(V )
j , where kjV

(V )
j = 0. (2.6)

Here k̂ = k/k.
For a spatial symmetric tensor field we have

Hij = HLδij −
(
kikj
k2
− 1

3
δij∆

)
HT +

i

2

(
k̂jH

(V )
i + k̂iH

(V )
j,i

)
+H

(T )
ij , (2.7)

where
H

(V ),i
i = H

(T ) i
i = H

(T ) ,j
ij = 0 . (2.8)

Here HL and HT are helicity-0 components, H
(V )
i is the helicity-1 component

and H
(T )
ij is the helicity-2 component of the tensor field H



Chap. 2 : Linear perturbation theory 29

Metric perturbations

Perturbations of the metric are of the form

gµν = ḡµν + a2hµν . (2.9)

We parametrize them as

hµν dx
µ dxν = −2Adt2 − 2Bi dt dx

i + 2Hij dx
i dxj , (2.10)

and we decompose the perturbation variables Bi and Hij according to (2.6) and
(2.7).

Let us consider the behaviour of hµν under gauge transformations. We set
the vector field defining the gauge transformation to

X = T∂t + Li∂i . (2.11)

Using the definition of the Lie derivative, we obtain (for details see exercises)

LXḡ = a2
[
−2
(
HT + Ṫ

)
dt2 + 2

(
L̇i − T,i

)
dt dxi

+
(
2HTγij + Li|j + Lj|i

)
dxi dxj

]
. (2.12)

Comparing this with (2.10) and using (2.4), we obtain

A → A+HT + Ṫ ,

Bi → Bi − L̇i + T,i ,

Hij → Hij +
1

2

(
Li|j + Lj|i

)
+HTγij .

Using the decompositions (2.6) for Bi and (2.7) for Hij this implies the following
behaviour of the perturbation variables under gauge transformations (we also

decompose the vector Li = Lk̂i + L(V )ei, k · e = 0):

A → A+HT + Ṫ , (2.13)

B → B − L̇− kT , (2.14)

B(V ) → B(V ) − L̇(V ) , (2.15)

HL → HL +HT +
k

3
L , (2.16)

HT → HT − kL , (2.17)

H(V ) → H(V ) − kL(V ) , (2.18)

H(T ) → H(T ) . (2.19)

Two scalar and one vector variable can be set to zero by gauge transformations.
We shall use this to choose the longitudinal gauge for scalar perturbations,
B = HT = 0. In this gauge, scalar perturbations of the metric are of the form
(HT |long = B|long = 0):

h(S)
µν dx

µdxν = −2Ψ dt2 − 2Φγij dx
idxj . (2.20)
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Ψ and Φ are the so-called Bardeen potentials. In a generic gauge the Bardeen
potentials are given by

Ψ = A−Hk−1σ − k−1σ̇ , (2.21)

Φ = −HL −
1

3
HT +Hk−1σ = −R+Hk−1σ , (2.22)

where σ = k−1ḢT −B, is the scalar potential for the shear of the hypersurface
of constant time, and R = HL + 1

3HT is proportional to the spatial curvature
perturbation.

In a FL universe the Weyl tensor (see Appendix A.1) vanishes. Its pertur-
bation is therefore gauge-invariant. For scalar perturbations one finds

Eij ≡ Cµiνjuµuν = −C0
i0j = −1

2

[
(Ψ + Φ),ij −

1

3
∆(Ψ + Φ)δij

]
, (2.23)

All other non-vanishing components are also given by Eij . In particular the
B-part of the Weyl tensor vanishes for scalar perturbations.

Matter perturbations

Not only the metric, but also the matter fields, i.e. the components of the
energy momentum tensor are perturbed. et Tµν = T

µ

ν + θµν be the full energy–
momentum tensor. We define its energy density ρ and its energy flux 4-vector
u as the time-like eigenvalue and eigenvector of Tµν :

Tµν u
ν = −ρuµ, u2 = −1 . (2.24)

We then parametrize their perturbations by

ρ = ρ̄ (1 + δ) , u = u0∂t + ui∂i . (2.25)

The component u0 is fixed by the normalization condition,

u0 =
1

a
(1−A) . (2.26)

We further set

ui =
1

a
vi =

1

a

(
vi + v(V )i

)
. (2.27)

Here v is a gradient (scalar perturbation) and v(V ) is divergence free (vector
perturbation) Pµν ≡ uµuν + δµν is the projection tensor onto the subspace of
tangent space normal to u. We define the stress tensor

τµν = PµαP
ν
β T

αβ . (2.28)

With this we can write
Tµν = ρuµuν + τµν . (2.29)

In the unperturbed case we have τ0
µ = τµ0 = 0 and τ ij = P̄ δij . Including first-

order perturbations, the components τ0µ are determined by the perturbation
variables which we have already introduced. We obtain

τ0
0 = 0 , and τ j0 = −P̄ vj , τ0

j = P̄ (vj −Bj) . (2.30)
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But τ ij contains in general new perturbations. We define

τ ij = P̄
[
(1 + πL) δij + Πi

j

]
, with Πi

i = 0 . (2.31)

From our definitions we can determine the perturbations of the energy–momentum
tensor. A short calculation gives

T 0
0 = −ρ̄(1 + δ) , (2.32)

T 0
j = (ρ̄+ P̄ )(vj −Bj) , (2.33)

T j0 = −(ρ̄+ P̄ )vj , (2.34)

T ij = P̄
[
(1 + πL)δij + Πi

j

]
. (2.35)

The traceless part of the stress tensor, Πi
j , is called the anisotropic stress tensor.

In Fourier space we decompose it as

Πi
j(k) = Π

(
1

3
δij − k̂ik̂j

)
+ Π(V ) 1

2
(eikj + ejk

i) + Π(T )eij . (2.36)

Here e is a unit vector normal to k̂ and eij is one of the two helicity 2 po-
larisations (either circular or linear). We assume perturbations to obey parity
symmetry so that we can work just with one polarisation and, in the end mul-
tiply the result for the power spectrum by a factor 2.

We now study the gauge transformation properties of these perturbation
variables. First we note that ρ is a scalar and LX ρ̄ = ˙̄ρT = −3(1+w)Hρ̄T . Here
we made use of the energy conservation equation. The same is true for P̄ (1+πL)
which is 1/3 of the trace of τµν . With the adiabatic sound speed defined by c2s =

Ṗ /ρ̇, we obtain LX P̄ = ˙̄PT = −3
c2s
w (1 +w)HP̄ T . The background contribution

to the anisotropic stress tensor, Πµ
ν = τµν − 1

3τ
α
α δ

µ
ν , vanishes, hence Πµ

ν is gauge
invariant (the Stewart–Walker lemma). For perfect fluids Πµ

ν = 0. For the
velocity we use LX ū = [X, ū] = (−T ȧa−2 − a−1Ṫ )∂t − a−1L̇i∂i. Inserting our
decomposition into scalar, vector and tensor perturbation variables for a fixed
mode k, we obtain finally the following transformation behaviour

δ → δ − 3(1 + w)HT , (2.37)

πL → πL − 3
c2s
w

(1 + w)HT , (2.38)

v → v − L̇ , (2.39)

Π → Π , (2.40)

v(V ) → v(V ) − L̇(V ) , (2.41)

Π(V ) → Π(V ) , (2.42)

Π(T ) → Π(T ) . (2.43)

Apart from the anisotropic stress perturbations, there is only one gauge-
invariant variable which can be obtained from the energy–momentum tensor
alone, namely

Γ = πL −
c2s
w
δ . (2.44)

One can show [9] that Γ is proportional to the divergence of the entropy flux of
the perturbations. Adiabatic perturbations are characterized by Γ = 0.
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Gauge-invariant density and velocity perturbations can be found by combin-

ing δ, v and v
(V )
i with metric perturbations. We shall use

V ≡ v − 1

k
ḢT = vlo , (2.45)

Ds ≡ δ + 3(1 + w)H(k−2ḢT − k−1B) ≡ δlo , (2.46)

D ≡ δlo + 3(1 + w)
H
k
V = δ + 3(1 + w)

H
k

(v −B)

= Ds + 3(1 + w)
H
k
V , (2.47)

Dg ≡ δ + 3(1 + w)

(
HL +

1

3
HT

)
= δlo − 3(1 + w)Φ

= Ds − 3(1 + w)Φ , (2.48)

V (V ) ≡ v(V ) − 1

k
Ḣ(V ) = v(vec) , (2.49)

Ω ≡ v(V ) −B(V ) = v(vec) + σ(V ) , (2.50)

Ω− V (V ) = σ(V ) . (2.51)

Here vlo, δlo and v(vec) are the velocity (and density) perturbations in the lon-
gitudinal and vector gauge1 respectively, and σ(V ) is the metric perturbation in
vector gauge and the shear of the t = constant hypersurfaces, see [9] for details.

These variables can be interpreted nicely in terms of gradients of the energy
density and the shear and vorticity of the velocity field.

On scales much smaller than the Hubble scale, k � H ∼ t−1, the metric
perturbations are much smaller than δ and v and we can neglect the differ-
ence between different gauges and/or gauge-invariant perturbation variables of
the energy momentum tenosr. This is especially important when comparing
experimental results with gauge-invariant calculations. This can be seen by
the following order of magnitude argument: The perturbations of the Einstein
tensor are a combination of the second derivatives of the metric perturbations,
H times the first derivatives and H2 or Ḣ times metric perturbations. The
first-order perturbation of Einstein’s equations therefore generically yield the
following order of magnitude estimate 8πGδTµν = δGµν :

O
(
δTµν
a2ρ

)
O
(
8πGa2ρ

)︸ ︷︷ ︸
O(ȧ/a)2=O(1/t2)

= O
(

1

t2
h+

k

t
h+ k2h

)
, (2.52)

O
(
δTµν
a2ρ

)
= O

(
h+ kth+ (kt)2h

)
. (2.53)

For kt � 1 this gives O(δ, v) = O (δTµν/ρ) � O(h). Therefore, on subhorizon
scales the differences between δ, δlo, Dg and D are negligible as are the differ-
ences between v and V or v(V ), V (V ) and Ω(V ). Since observations of density
and velocity perturbations can only be made on vastly subhorizon scales, we
may therefore use any of the gauge-invariant perturbation variables to compare
with observations. Actually, when we carefully analyse what is truly measured,
this always turns out to be gauge invariant in first order perturbation theory.

1’vector gauge’ is defined by H(V ) = 0.
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2.1.3 Perturbation equations

We do not derive the first-order perturbations of Einstein’s equations. By el-
ementary algebraic methods, this is quite lengthy and cumbersome. However,
we recommend that the student simply determines δGµν in longitudinal gauge
using some algebraic package like Maple or Mathematica and then writes down
the resulting Einstein equations using gauge-invariant variables. Since we know
that these variables do not depend on the coordinates chosen, the equations
obtained in this way are valid in any gauge. Here, we just present the resulting
equations in gauge-invariant form. A rapid derivation by hand is possible using
the 3+1 formalism of general relativity and working with Cartan’s formalism for
the Riemann curvature, see [20]. In order to simplify the notation, we suppress
the overbar on background quantities whenever this does not lead to confusion.
We also do not present the vector perturbation equations and set K = 0 as
before.

Einstein’s equations

The Einstein equations G0µ = 8πGT0µ lead to two scalar constraint equations,

4πGa2ρD = −k2Φ (00)

4πGa2(ρ+ P )V = k
(
HΨ + Φ̇

)
(0i)

, (2.54)

The dynamical Einstein equations, Gij = 8πGTij , provide two scalar, one
vector and one tensor perturbation equations. The scalar and tensor equations
are
scalar:

k2 (Φ−Ψ) = 8πGa2PΠ(S) , (2.55)

Φ̈ + 2HΦ̇ +HΨ̇ +

[
2Ḣ+H2 − k2

3

]
Ψ = 4πGa2ρ

[
1

3
D + c2sDs + wΓ

]
,(2.56)

tensor:

Ḧ(T ) + 2HḢ(T ) + k2H(T ) = 8πGa2PΠ(T ) . (2.57)

The second dynamical scalar equation is somewhat cumbersome and not often
used, since we may use one of the conservation equations given below instead.
For the derivation of the perturbed Einstein equation the following relations
are useful. They can be derived from the Friedmann equations; a possible
cosmological constant is included in ρ and P .

4πGa2ρ(1 + w) = H2 − Ḣ , (2.58)

Ḣ = −1 + 3w

2
H2 , (2.59)

4πGa2ρ(1 + w)3c2s =
Ḧ
H − Ḣ −H

2 , (2.60)

c2s =
Ḧ
H − Ḣ −H2

3[H2 − Ḣ]
. (2.61)

For the calculations below we shall also make use of

ẇ = 3(w − c2s)(1 + w)H . (2.62)
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Note that for perfect fluids, where Πi
j ≡ 0, we have Φ = Ψ. As we shall see

below, for perfect fluids with Γ = Π = 0, the behaviour of scalar perturbations
is given by Ψ, which describes a damped wave propagating with speed c2s.

Tensor perturbations are given by H(T ), which for perfect fluids also obeys
a damped wave equation propagating with the speed of light. On small scales
(over short time periods) when t−2<∼ k2, i.e. sub-Hubble scales, the damping
term can be neglected and Hij represents propagating gravitational waves.

Energy–momentum conservation

The conservation equations, Tµν;ν = 0 lead to the following scalar perturbation
equations:

Ḋg + 3
(
c2s − w

)
HDg + (1 + w)kV + 3wHΓ = 0 (2.63)

V̇ +H
(
1− 3c2s

)
V = k

(
Ψ + 3c2sΦ

)
+

c2sk

1 + w
Dg (2.64)

+
wk

1 + w

[
Γ− 2

3

(
1− 3K

k2

)
Π

]
(2.65)

It is sometimes also useful to express the energy conservation equation in terms
of the variable pair (D,V ). Using D = Dg + 3(1 + w)

[
Hk−1V + Φ

]
in (2.63)

one obtains after some algebra and making use of the (0i) constraint equation
(2.54)

Ḋ − 3wHD = − [(1 + w)kV + 2HwΠ] , (2.66)

For scalar perturbations we can actually derive an evolution equation for Φ,
where Γ and Π enter only as source terms. Replacing D and Ds in (2.56) by
use of (2.47) and (2.54) and replacing Ψ by Π and Φ via Eq. (2.55) leads to

Φ̈ + 3H(1 + c2s)Φ̇ +
[
3(c2s − w)H2 + c2sk

2
]

Φ

=
8πGa2P

k2

[
HΠ̇ + [2Ḣ+ 3H2(1− c2s/w)]Π− 1

3
k2Π +

k2

2
Γ

]
. (2.67)

This is the Bardeen equation. To derive it we also made use of (2.59) to replace
Ḣ.

Exercice 7 The Bardeen equation

1. We consider the case Γ = Π = 0 and w = c2s =constant.

(i) Solve the Bardeen equation. Discuss especially the cases w = 1/3
and w = 0.

(ii) Compute also V , D and Ds, discuss again the cases w = 1/3 and
w = 0.

(iii) Concentrating on the ’growing’ mode, solve the equation numerically
in a matter radiation universe. Plot the resulting power spectrum,
PΨ = k3|Ψ|2(k, t0) for scale invariant initial initial conditions,

PΨ = k3|Ψ|2(k, tin) = const. ,

given deep in the radiation era. Plot also the density power spectrum
PD = k3|D|2(k, t0) . Discuss!
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2. Derive the Bardeen eqn. as outlined above (this is a bit more difficult,
maybe specialize on Γ = Π = 0 and w = c2s =constant.).

Solving the above exercise you have seen that the Bardeen potential never
grows. This fact (even though he used different variables) led Lifshitz [18] to
the conclusion that perturbations do not grow in an expanding universe. It is
actually interesting that the gravitational potential on all cosmological scales
from galaxies (∼ 10kpc) to the Hubble scale (∼ 10Gpc) has about the same
amplitude, Ψ ∼ 10−5.

Exercice 8 Solve the tensor perturbation equation (2.57) in the case Π(T ) = 0.
Discuss the behavior on super- and sub-Hubble scales.

2.2 Perturbed photon geodesics

After decoupling, t > tdec, photons follow light-like geodesics. The temperature
shift of a Planck distribution of photons is equal to the energy shift of any
given photon. The relative energy shift, red- or blue shift, is independent of the
photon energy (gravity is ‘achromatic’).

The unperturbed photon trajectory follows

(xµ(t)) ≡
(
t,

∫ t0

t

n(t′) dt′ + x0

)
,

where x0 is the photon position at time t0 and n is the (parallel transported)
photon direction. We determine the components of the photon momentum with
respect to a geodesic basis (ei)

3
i=1 on the constant time hypersurfaces. We

choose

ei =
∂

∂xi
(2.68)

Our metric is of the form

ds̃2 = a2ds2 , with (2.69)

ds2 = (ηµν + hµν) dxµ dxν , η00 = −1, ηi0 = 0, ηij = δji . (2.70)

We make use of the fact that light-like geodesics are conformally invariant.
More precisely, ds2 and ds̃2 have the same light-like geodesics, only the corre-
sponding affine parameters are different. Let us denote the two affine parameters
by λ and λ̃ respectively, and the tangent vectors to the unperturbed geodesic
by

n =
dx

dλ
, ñ =

dx

dλ̃
, n2 = ñ2 = 0 , n0 = 1 , n2 = 1 . (2.71)

The photon 4-momentum pµ is then given by pµ = ωn, where ω is the constant
energy of the photon moving in the unperturbed metric ds2. We have seen
that in expanding space the photon momentum is redshifted. Actually, the
components behave like ñi ∝ 1/a2 so that ñ2 = a2

∑
i(ñ

i)2 ∝ 1/a2, hence we

have to choose λ̃ = a2λ. As always for light-like geodesics, λ̃ and λ are only
determined up to a multiplicative constant which we have fixed by the conditions
n2 = 1 and λ̃ = a2λ.
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Let us now introduce perturbations. We set n0 = 1 + δn0. The geodesic
equation for the perturbed metric

ds2 = (ηµν + hµν) dxµ dxν , (2.72)

yields, to first order,
d

dλ
δnµ = −δΓµαβnαnβ . (2.73)

For the energy shift, we have to determine δn0. Since g0µ = −δ0µ + first order,

we obtain δΓ0
αβ = − 1

2 (hα0|β + hβ0|α − ḣαβ), so that

d

dλ
δn0 = hα0|βn

βnα − 1

2
ḣαβn

αnβ . (2.74)

Integrating this equation we use hα0|βnβnα = d
dλ (hα0n

α), so that the change of
n0 between some initial time ti and some final time tf is given by

δn0|fi =
[
h00 + h0jn

j
]f
i
− 1

2

∫ f

i

ḣµνn
µnνdλ . (2.75)

The energy of a photon with 4-momentum p̃µ as seen by an observer moving
with 4-velocity ũ is given by E = −(ũ̃·p̃). Hence, the ratio of the energy of a
photon measured by some observer at tf to the energy emitted at ti is

Ef
Ei

=
(ñ̃·ũ)f
(ñ̃·ũ)i

=
ai
af

(n · u)f
(n · u)i

, (2.76)

where here ·̃ denotes the scalar product in an expanding universe, containing the
factor a2 and ũ is the emitter and receiver 4-velocity in an expanding universe,
ũ = a−1u, while uf and ui are the 4-velocities of the observer and emitter
respectively in the non-expanding conformally related geometry given by

u = (1−A)∂t + viei = aũ . (2.77)

Together with ñ = a−2n this implies the result (2.76). The ratio ai/af = Tf/Ti
is the usual (unperturbed) redshift. An observer measuring a temperature T0

receives photons that were emitted at the time tdec of decoupling of matter and
radiation, at the fixed temperature Tdec. In first-order perturbation theory, we
find the following relation between the unperturbed temperatures Tf , Ti, the
true temperatures T0 = Tf+δTf , Tdec = Ti+δTi, and the photon energy density
perturbation:

ai
af

=
Tf
Ti

=
T0

Tdec

(
1− δTf

Tf
+
δTi
Ti

)
=

T0

Tdec

(
1− 1

4
δγ |fi

)
, (2.78)

where δγ is the intrinsic energy density perturbation in the radiation and we
have used ργ ∝ T 4 in the last equality. Inserting the above equation and
Eq. (2.75) into Eq. (2.76), and using Eq. (2.10) for the definition of hµν , as well
as Eqs. (2.21), (2.22), (2.48) and (2.45) one finds, after integration by parts, the
following result for scalar perturbations:

Ef
Ei

=
T0

Tdec

{
1−

[
1

4
D(r)
g + V

(b)
j nj + Ψ + Φ

]f
i

+

∫ f

i

(Ψ̇ + Φ̇) dλ

}
. (2.79)
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Here D
(r)
g denotes the density perturbation in the radiation fluid, and V (b) is the

peculiar velocity of the baryonic matter component (the emitter and observer
of radiation).

Evaluating Eq. (2.79) at final time t0 (today) and initial time tdec, we obtain
the temperature difference of photons coming from different directions n1 and
n2

∆T

T
≡ ∆T (n1)

T
− ∆T (n2)

T
≡ Ef
Ei

(n1)− Ef
Ei

(n2) . (2.80)

Direction-independent contributions to Ef/Ei do not enter in this difference.

The largest contribution to ∆T/T is the dipole term, V
(b)
j (t0)nj which simply

describes our motion with respect to the emission surface. Its amplitude is about
1.2×10−3 and it has been measured so accurately that even the yearly variation
due to the motion of the Earth around the sun has been detected.

For the higher multipoles (polynomials in nj of degree 2 and higher) we can
set

∆T (n)

T
=

[
1

4
D(r)
g + V

(b)
j nj + Ψ + Φ

]
(tdec,xdec) +

∫ t0

tdec

(Ψ̇ + Φ̇)(t,x(t)) dt ,

(2.81)
where x(t) is the unperturbed photon position at time t for an observer at x0,
and xdec = x(tdec) (if K = 0 we simply have x(t) = x0−(t0−t)n). The first term
in Eq. (2.81) is the one we have discussed in the previous section. It describes
the intrinsic inhomogeneities of the radiation density on the surface of last scat-
tering, due to acoustic oscillations prior to decoupling, see Ex. 7. Depending
on the initial conditions, it can also contribute significantly on super-horizon
scales. This is especially important in the case of adiabatic initial conditions.
As we have seen in Ex. 7, in a dust + radiation universe with Ω = 1, adia-

batic initial conditions imply D
(r)
g (k, t) = − 20

3 Ψ(k, t) and V (b) = V (r) � D
(r)
g

when kt � 1. With Φ = Ψ the square bracket of Eq. (2.81) therefore gives for
adiabatic perturbations(

∆T (n)

T

)(OSW)

adiabatic

=
1

3
Ψ(tdec,xdec) ,

on super-horizon scales. The contribution to ∆T/T from the last scattering
surface on very large scales is called the ‘ordinary Sachs–Wolfe effect’ (OSW).
It was derived for the first time by Sachs and Wolfe (1967).

The second term in (2.81) describes the relative motion of emitter and ob-
server. This is the Doppler contribution to the CMB anisotropies. It appears
on the same angular scales as the acoustic term; we call the sum of the acoustic
and Doppler contributions ‘acoustic peaks’.

The integral in Eq. (2.81) accounts for the red- or blue shifts caused by the
time dependence of the gravitational potential along the path of the photon, and
represents the so-called integrated Sachs–Wolfe (ISW) effect. In a Ω = 1, pure
dust universe, as we have seen, the Bardeen potentials are constant and there
is no integrated Sachs–Wolfe effect; the blue shift which the photons acquire by
falling into a gravitational potential is exactly cancelled by the redshift induced
by climbing out of it. This is no longer true in a universe with substantial
radiation contribution, curvature, or a cosmological constant. The sum of the
ordinary Sachs–Wolfe term and the integral is the full Sachs–Wolfe contribution.
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For tensor perturbations, i.e. gravitational waves, only the gravitational
part remains: (

Ef
Ei

)(T )

=
ai
af

[
1−

∫ f

i

Ḣljn
lnjdλ

]
. (2.82)

Equations (2.79) and (2.82) are the manifestly gauge-invariant results for the
energy shift of photons due to scalar and tensor perturbations. Disregarding
again the dipole contribution due to our proper motion, Eq. (2.82) implies the
tensor temperature fluctuations(

∆T (n)

T

)(T )

= −
∫ f

i

Ḣlj(t,x(t))nlnj dλ . (2.83)

2.3 Power spectra

The quantities that we can determine from a given model are usually not the
precise values of perturbation variables as Ψ(k, t), but only expectation values
like 〈Ψ(k, t) · Ψ∗(k′, t)〉. In different realizations, e.g., of the same inflationary
model, the ‘phases’ α(k, t) given by Ψ(k, t) = exp(iα(k))|Ψ(k, t)| are different.
They are random variables. If we assume that the random process which gener-
ates the fluctuations Ψ is stochastically homogeneous and isotropic, these phases
have a vanishing 2-point correlator for different values of k and |Ψ| depends only
on the modulus k = |k|.

The quantity which we can calculate for a given model and which then
has to be compared with observations is the power spectrum, defined below.
Power spectra are the ‘harmonic transforms’ of the 2-point correlation func-
tions.2 If the perturbations of the model under consideration are Gaussian, a
relatively generic prediction from inflationary models, then the 2-point functions
and therefore the power spectra contain the full statistical information of the
model.

There is one additional problem to consider: one can never ‘measure’ expec-
tation values. We have only one Universe, i.e. one realization of the stochastic
process which generates the fluctuations at our disposal for observations. The
best we can do when we want to determine the mean square fluctuation on a
given scale λ is to average over many disjoint patches of size λ, assuming that
this spatial averaging corresponds to an ensemble averaging; a type of ‘ergodic
hypothesis’. This works well as long as the scale λ is much smaller than the
Hubble horizon, the size of the observable Universe. For λ ∼ O(H−1

0 ) we can no
longer average over many independent volumes and the value measured could
be quite far from the ensemble average. This problem is known under the name
‘cosmic variance’.

For an arbitrary scalar variable X in position space, we define the power
spectrum in Fourier space by

〈X (k, t0)X∗ (k′, t0)〉 = (2π)3δ(k− k′)PX(k) . (2.84)

The 〈 〉 indicates a statistical average, ensemble average, over ‘random initial
conditions’ in a given model. We assume that no point in space is preferred,

2The ‘harmonic transform’ in usual flat space is simply the Fourier transform. In curved
space it is the expansion in terms of eigenfunctions of the Laplacian on that space, e.g., on
the sphere it corresponds to the expansion in terms of spherical harmonics.
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in other words that X(x, t0) (and any other stochastic field which we consider)
has the same distribution in every point x. Such random fields are called ‘sta-
tistically homogeneous’ (or stationary). We also assume that the distribution
of X(x, t0) has no preferred direction. This means that the random field X is
statistically isotropic. These properties imply that the Fourier transform of the
2-point function is diagonal, i.e. they explain the factor δ(k−k′) in Eq. (2.84),
and that the power spectrum depends only on the modulus k. (see Ex. 9 below).

Since the perturbation equations are linear and different k’s are decoupled,
they are of the form

Dij(k, t)Xj(k, t) = 0 (2.85)

with some linear dirrerential operator Dij . Their solution is of the form

Xj(k, t0) = Tji(k)Xj(k, tin) . (2.86)

Tij is called the transfer matrix. This transfer matrix can be calculated from the
linear perturbation equations and it only depends on the cosmological model,
i.e. the cosmological parameters. With its help we can express the power spectra
today, t = t0 in terms of the initial power spectra.

Exercice 9 Power spectrum
For a spatial, statistically homogeneous and isotropic random variable X(x) with
vanishing mean we define the 2-point function

ξ(r) = 〈X(x)X(x + rn)〉 .

Homogeneity requires that ξ does not depend on the position of the first point, x
and isotropy means that ξ is independent of the direction n in which the second
point y = x + rn lies. Hence ξ depends only on the distance r. Show that the
power spectrum defined in Eq. (2.84) is the Fourier transform of the correlation
function ξ.

2.3.1 The matter power spectrum

As a simple example, we consider the matter power spectrum, PD, in a mat-
ter/radiation universe. It is defined by

〈Dm (k, t0)D∗m (k′, t0)〉 = PD(k)(2π)3δ(k− k′) . (2.87)

Since in this case Ψ satisfies a simple second order differential equation and D
is related to Ψ via the algebraic Eq. (2.54), we have

PD(k) = T 2
D(k)PΨ(k, tin) . (2.88)

Os subhorizon scale PD is the power spectrum of matter density fluctuations.
However, PD(k) is usually compared with the observed power spectrum of the
galaxy distribution. This is clearly problematic since it is by no means evident
what the relation between these two spectra should be. This problem is known
under the name of ‘biasing’ and it is very often simply assumed that the dark
matter and galaxy power spectra differ only by a scale independent (but time
dependent) factor b(t). The hope is also that on sufficiently large scales, since
the evolution of both, galaxies and dark matter is governed by gravity, their
power spectra should not differ by much.
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The power spectrum of velocity perturbations satisfies the relation

〈Vj (k, t0)V ∗i (k′, t0)〉 = k̂jk̂
′
iPV (k)(2π)3δ(k− k′) , (2.89)

PV (k) = f2

(
H0

k

)2

PD(k) with (2.90)

f(k) ' Ω0.6
m . (2.91)

For ' we have used that in a matter dominated universe (with possibly a cosmo-
logical constant or curvature) |kV (t0)| = Ḋ(m)(t0) ∼ H0Ω0.55

m Dg on subhorizon
scales (see e.g., Peebles, 1993 [21]).

2.3.2 The CMB fluctuation power spectrum

The present universe is actually not quite a matter/radiation universe with a
cosmological constant. The reason is that the radiation content of the Universe
is no longer in thermal equilibrium. Neutrinos free-stream already since T ∼
1.4MeV while photons free-stream since decoupling at T ' 3000K ' 0.26eV.

Fluctuations of the photon (and neutrino) distribution therefore cannot be
given simply by a density and velocity field but they contain higher moments in
phase space. We describe them as the temperature fluctuations depending on
position x, time t and direction n. We develop the directional dependence in
spherical harmonics. Assuming again statistical homogeneity and isotropy the
off-diagonal correlators of the expansion coefficients a`m vanish and we have

∆T

T
(x0,n, t0) =

∑
`,m

a`m(x0)Y`m(n), 〈a`m · a∗`′m′〉 = δ``′δmm′C` . (2.92)

The C`s are the CMB power spectrum.
The 2-point correlation function, C(µ), µ = n · n′, is related to the C`s by

C(µ) ≡
〈

∆T

T
(n)

∆T

T
(n′)

〉
n·n′=µ

=
∑

`,`′,m,m′

〈a`m · a∗`′m′〉Y`m(n)Y ∗`′m′(n
′)

=
∑
`

C`
∑̀
m=−`

Y`m(n)Y ∗`m(n′)︸ ︷︷ ︸
2`+1
4π P`(n·n′)

=
1

4π

∑
`

(2`+ 1)C`P`(µ) , (2.93)

where we have used the addition theorem of spherical harmonics for the last
equality; the P`s are the Legendre polynomials.

Scalar perturbations

Let us first discuss in somewhat more detail scalar perturbations. We suppose
the initial perturbations to be given by a spectrum of the form

〈Ψ(k)Ψ∗(k′)〉 k3 = (2π)3k3PΨ(k)δ(k−k′) = (2π)3AS(kt0)n−1δ(k−k′) . (2.94)
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We multiply by the constant tn−1
0 , the actual comoving size of the horizon,

in order to keep AS dimensionless for all values of the spectral index n. AS
then represents the amplitude of metric perturbations at horizon scale today,
k = 1/t0.

As we have seen in the previous section, the dominant contribution on super-
horizon scales (neglecting the integrated Sachs–Wolfe effect

∫
Φ̇ + Ψ̇ ) is the

ordinary Sachs–Wolfe effect, OSW, which for adiabatic perturbations is given
by

∆T

T
(x0,n, t0) ' 1

3
Ψ(xdec, tdec) . (2.95)

Since xdec = x0 + n(t0 − tdec), the Fourier transform of (2.95) gives

∆T

T
(k,n, t0) =

1

3
Ψ(k, tdec) · eikn(t0−tdec) . (2.96)

Using the decomposition (see [6])

eikn(t0−tdec) =
∞∑
`=0

(2`+ 1)i`j`(k(t0 − tdec))P`(k̂ · n) ,

where j` are the spherical Bessel functions, we obtain (k = |k|, k̂ = k/k)〈
∆T

T
(x0,n, t0)

∆T

T
(x0,n

′, t0)

〉
(2.97)

=
1

(2π)6

∫
d3k d3k′ eix0·(k−k′)

〈
∆T

T
(k,n, t0)

(
∆T

T

)∗
(k′,n′, t0)

〉
' 1

(2π)69

∫
d3kd3k′eix0·(k−k′) 〈Ψ(k)Ψ∗(k′)〉

∞∑
`,`′=0

(2`+ 1)(2`′ + 1)i`−`
′

·j`(k(t0 − tdec))j`′(k
′(t0 − tdec))P`(k̂ · n) · P`′(k̂′ · n′)

=
1

(2π)39

∫
d3kPΨ(k)

∞∑
`,`′=0

(2`+ 1)(2`′ + 1)i`−`
′

· j`(k(t0 − tdec))j`′(k(t0 − tdec))P`(k̂ · n) · P`′(k̂ · n′) . (2.98)

In the first equals sign we have used the unitarity of the Fourier transfor-
mation. Inserting P`(k̂n) = 4π

2`+1

∑
m Y

∗
`m(k̂)Y`m(n) and P`′(k̂n′) = 4π

2`′+1∑
m′ Y

∗
`′m′(k̂)Y`′m′(n

′), integration over the directions dΩk̂ gives δ``′δmm′
∑
m Y

∗
`m(n)Y`m(n′).

Also using
∑
m Y

∗
`m(n)Y`m(n′) = 2`+1

4π P`(µ), where µ = n · n′, we find〈
∆T

T
(x0,n, t0)

∆T

T
(x0,n

′, t0)

〉
nn′=µ

'
∑
`

2`+ 1

4π
P`(µ)

2

π

∫
dk

k

1

9
PΨ(k)k3j2

` (k(t0 − tdec)) . (2.99)

Comparing this equation with Eq. (2.93) we obtain for adiabatic perturba-
tions on scales 2 ≤ ` � χ(t0 − tdec)/tdec ∼ 100:

C
(SW)
` ' C(OSW)

` ' 2

9π

∫ ∞
0

dk

k
PΨ(k)k3j2

` (k (t0 − tdec)) . (2.100)
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The function j2
` (k(t0 − tdec)) peaks roughly at k (t0 − tdec) ' kt0 ' `. If Ψ is a

pure power law on large scales, ktdec<∼ 1 as in Eq. (2.94) and we set k(t0−tdec) ∼
kt0, the integral (2.100) can be performed analytically. For the ansatz (2.94),
one finds

C
(SW)
` =

AS
9

Γ(3− n)Γ(`− 1
2 + n

2 )

23−nΓ2(2− n
2 )Γ(`+ 5

2 − n
2 )

for − 3 < n < 3 . (2.101)

Of special interest is the scale-invariant or Harrison–Zel’dovich (HZ) spec-
trum, n = 1. Such a spectrum does not lead to large fluctuations neither on
very large, nor on very small scales. Interestingly a spectrum with n ' 1 is also
obtained from inflation. It leads to

`(`+ 1)C
(SW)
` =

AS
9π
'
〈(

∆T

T
(ϑ`)

)2
〉

, ϑ` ≡ π/` . (2.102)

This is precisely (within the accuracy of the experiment) the behaviour observed
by the DMR (differential microwave radiometer) experiment aboard the satellite
COBE [22] and , much more precisely, with the Planck satellite [2], n = 0.9653±
0.0048 (see Table 3.79) .

Inflationary models predict very generically a HZ spectrum (up to small
corrections, i.e. a slightly red spectrum as observed). The DMR discovery and
even more the Planck result has therefore been regarded as a great success, if not
a proof, of inflation. There are, however, other models such as topological defects
(see, e.g. [15]), or certain string cosmology models [23] which also predict scale-
invariant, i.e. Harrison–Zel’dovich spectra of fluctuations. These models are
outside the class investigated here, since in them perturbations are induced by
seeds which evolve non-linearly in time. They are not simply laid down as initial
conditions for the fluid perturbations but typically affect the perturbations of
a given wavelength until it crosses the Hubble scale. This generically leads to
iso-curvature perturbations which are ruled out as the dominant component by
present data.

For iso-curvature perturbations, the main contribution on large scales comes
from the integrated Sachs–Wolfe effect and (2.100) is replaced by

C
(ISW)
` ' 8

π

∫
dk

k
k3

〈∣∣∣∣∫ t0

tdec

Ψ̇(k, t)j`(k(t0 − t)) dt
∣∣∣∣2
〉
. (2.103)

Inside the horizon Ψ is roughly constant (matter dominated). Using the ansatz
(2.94) for Ψ inside the horizon and setting the integral in (2.103) ∼ 2Ψ(k, t =
1/k)j2

` (kt0), we obtain again (2.101), but with AS/9 replaced by 4AS . For a
fixed amplitude AS of perturbations, the Sachs–Wolfe temperature anisotropies
coming from iso-curvature perturbations are therefore about six times larger
than those coming from adiabatic perturbations (see Fig. 2.1).

On smaller scales, ` >∼ 100, the contribution to ∆T/T is dominated by acous-
tic oscillations, the first two terms in Eq. (2.81). Instead of (2.103) we then
obtain

C
(AC)
` ' 2

π

∫ ∞
0

dk

k
k3

〈∣∣∣∣14Dr(k, tdec)j`(kt0) + V (b)(k, tdec)j′`(kt0)

∣∣∣∣2
〉

.

(2.104)
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Figure 2.1: Examples of COBE normalized adiabatic (solid line) and iso-
curvature (dashed line) CMB anisotropy spectra, `(` + 1)C`/(2π) in units of
(µK)2 are shown on the top panel. In the bottom panel the ratio of the iso-
curvature to adiabatic temperature fluctuations is plotted.

To remove the SW contribution from D
(r)
g we have simply replaced it by Dγ

which is much smaller than Ψ on super-horizon scales and therefore does not con-

tribute to the SW terms. On subhorizon scales Dγ ' D(γ)
g and Vγ are oscillating

like sine or cosine waves depending on the initial conditions. Correspondingly

the C
(AC)
` will show peaks and minima. For adiabatic initial conditions D

(γ)
g

and therefore Dγ also oscillates like a cosine. Its minima and maxima are at
kntdec/

√
3 = nπ. Odd values of n correspond to maxima, ‘contraction peaks’,

while even numbers are minima, ‘expansion peaks’.
These are the ‘acoustic peaks’ of the CMB anisotropies. Sometimes they

are misleadingly called ‘Doppler peaks’ referring to an old misconception that
the peaks are due to the velocity term in the above formula. Actually the
contrary is true. At maxima and minima of the density contrast, the velocity
(being proportional to the derivative of the density) nearly vanishes. We shall
therefore consistently call the CMB peak structure ‘acoustic peaks’.

The angle θn, which subtends the scale λn = π/kn at the last scattering
surface, is determined by the angular diameter distance to the last scattering
surface, dA(tdec) via the relation θn = λn/dA(tdec). Expanding the temperature
anisotropies in spherical harmonics, the angular scale θn corresponds (roughly)
to the harmonic number

`n ' π/θn = πdA(tdec)/λn = dA(tdec)kn = n
√

3πdA(tdec)/tdec . (2.105)

For a flat matter dominated universe dA(tdec) ' t0 leading to `n ' 180n. This
crude approximation deviates by about 15% from the precise numerical value,
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which not only depends, with dA, strongly on curvature but also on the Hubble
parameter and on the cosmological constant. Furthermore, the peak positions
depend on the sound speed of the radiation–baryon plasma which we have simply
set to cs = 1/

√
3 in this approximation. The peak position and their spacing

therefore strongly depends on the parameters of the underlying cosmological
model. For a flat universe, Ω = 1, the nth peak therefore is placed at

`n ' knt0 ∼= nπ
√

3
t0
tdec

. (2.106)

For a flat matter dominated universe we have t0
tdec
∼ √zdec ∼ 33.2 which yields

`1 ∼ 180. Here we have used zdec ∼ 1100. This approximation is not very good
since the Universe is not very well matter dominated at tdec. A somewhat more
accurate estimate gives `1 ∼ 220, in good agreement with the numerical value.
Subsequent peaks are then given by `n = n`1.

Our discussion is only valid in flat space. In curved space the exponentials
exp(ik(t0 − tdec)) have to be replaced with the harmonics of the curved spaces.
For the positions of the peaks, this corresponds to replacing knt0 by knχ(t0),
hence replacing t0 by the comoving angular diameter distance to the last scat-
tering surface. Instead of Eq. (2.106) we then obtain the following approximate
relation for the peak positions,

`n ∼ nπ
√

3
χ(t0)

tdec
. (2.107)

For values of Ω close to unity this scales like 1/
√

Ω.

On even smaller scales (`>∼ 800) the acoustic peaks are damped by the pho-
ton diffusion, so called Silk damping, which takes place during the recombination
process. This effect will be discussed with the Boltzmann equation approach in
Section 3.1.4.

Tensor perturbations

For gravitational waves (which are tensor fluctuations), a formula analogous to
(2.101) can be derived, see [9]

C
(T )
` =

2

π

∫
dk k2

∣∣∣∣∫ t0

tdec

dt Ḣ(t, k)
j`(k(t0 − t))
(k(t0 − t))2

∣∣∣∣2 (`+ 2)!

(`− 2)!
. (2.108)

To a very crude approximation we may assume Ḣ(T ) = 0 on super-horizon
scales and

∫
dt Ḣ(T )j`(k(t0− t)) ∼ H(T )(t = 1/k)j`(kt0). For a pure power law,

k3 |H(k, t = 1/k)|2 = AT (kt0)nT , (2.109)

one obtains

C
(T )
` ' 2

π

(`+ 2)!

(`− 2)!
AT

∫
dx

x
xnT

j2
` (x)

x4

=
(`+ 2)!

(`− 2)!
AT

Γ(6− nT )Γ(`− 2 + nT
2 )

26−nT Γ2( 7−nT
2 )Γ(`+ 4− nT

2 )
. (2.110)
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For a scale-invariant spectrum (nT = 0) this results in

`(`+ 1)C
(T )
` ' 8

15π

`(`+ 1)

(`+ 3)(`− 2)
AT . (2.111)

The singularity at ` = 2 in this crude approximation is not real, but there is

some enhancement of `(`+ 1)C
(T )
` at ` ∼ 2 (see Fig. 2.2).

Since tensor perturbations decay on subhorizon scales, ` >∼ 60, they are not
very sensitive to cosmological parameters.

Comparing the tensor and scalar result for scale-invariant perturbations we
obtain for large scales, ` < 50

C
(T )
`

C
(S)
`

' 24

5

AT
AS
≡ 40

3
r (2.112)

This is the definition of the tensor to scalar ratio r.
Present CMB anisotropy data favour a roughly scale-invariant spectrum with

amplitude
`(`+ 1)C` ' 6× 10−10 for `<∼ 50 .

If the perturbations are purely scalar, this requires AS ' 1.7×10−8, if they were
purely tensorial (which we know they are not), we would need AT ' 3.5×10−9.
In general observations require

AS
9π
' 6× 10−10 , r ≤ 0.1 . (2.113)
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Scalar Tensor

Figure 2.2: Adiabatic scalar and tensor CMB anisotropy spectra are plotted,
D` = `(` + 1)C`/(2π) in units of (µK)2 as functions of ` in log-scale (top
panels), where the Sachs–Wolfe plateau is clearly visible and in linear scale
(bottom panels) which shows the equal spacing of the acoustic peaks. The solid
line shows the temperature spectrum, the dashed line is the polarization and
the dotted line shows the temperature–polarization cross correlation (see sec-
tion 3.2 for a discussion of CMB polarisation). The latter can become negative,
the deep spikes in the dotted curves in the left-hand panels are actually sign
changes. The left-hand side shows scalar fluctuation spectra, while the right-
hand side shows tensor spectra. The observational data are well fitted by a
purely scalar spectrum. Comparison of data and a model scalar spectrum are
shown in Figs. 2.3–2.5.
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Planck Collaboration: Cosmological parameters
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Fig. 1. The Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency averaged
temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-
mined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm computed over 94% of the sky. The best-fit base ⇤CDM theoretical
spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� uncertainties.

sults to the likelihood methodology by developing several in-
dependent analysis pipelines. Some of these are described in
Planck Collaboration XI (2015). The most highly developed of
these are the CamSpec and revised Plik pipelines. For the
2015 Planck papers, the Plik pipeline was chosen as the base-
line. Column 6 of Table 1 lists the cosmological parameters for
base ⇤CDM determined from the Plik cross-half-mission like-
lihood, together with the lowP likelihood, applied to the 2015
full-mission data. The sky coverage used in this likelihood is
identical to that used for the CamSpec 2015F(CHM) likelihood.
However, the two likelihoods di↵er in the modelling of instru-
mental noise, Galactic dust, treatment of relative calibrations and
multipole limits applied to each spectrum.

As summarized in column 8 of Table 1, the Plik and
CamSpec parameters agree to within 0.2�, except for ns, which
di↵ers by nearly 0.5�. The di↵erence in ns is perhaps not sur-
prising, since this parameter is sensitive to small di↵erences in
the foreground modelling. Di↵erences in ns between Plik and
CamSpec are systematic and persist throughout the grid of ex-
tended ⇤CDM models discussed in Sect. 6. We emphasise that
the CamSpec and Plik likelihoods have been written indepen-
dently, though they are based on the same theoretical framework.
None of the conclusions in this paper (including those based on

the full “TT,TE,EE” likelihoods) would di↵er in any substantive
way had we chosen to use the CamSpec likelihood in place of
Plik. The overall shifts of parameters between the Plik 2015
likelihood and the published 2013 nominal mission parameters
are summarized in column 7 of Table 1. These shifts are within
0.71� except for the parameters ⌧ and Ase�2⌧ which are sen-
sitive to the low multipole polarization likelihood and absolute
calibration.

In summary, the Planck 2013 cosmological parameters were
pulled slightly towards lower H0 and ns by the ` ⇡ 1800 4-K line
systematic in the 217 ⇥ 217 cross-spectrum, but the net e↵ect of
this systematic is relatively small, leading to shifts of 0.5� or
less in cosmological parameters. Changes to the low level data
processing, beams, sky coverage, etc. and likelihood code also
produce shifts of typically 0.5� or less. The combined e↵ect of
these changes is to introduce parameter shifts relative to PCP13
of less than 0.71�, with the exception of ⌧ and Ase�2⌧. The main
scientific conclusions of PCP13 are therefore consistent with the
2015 Planck analysis.

Parameters for the base ⇤CDM cosmology derived from
full-mission DetSet, cross-year, or cross-half-mission spectra are
in extremely good agreement, demonstrating that residual (i.e.
uncorrected) cotemporal systematics are at low levels. This is

8

Figure 2.3: The CMB temperature power spectrum, D` = T 2
0 `(` + 1)C`/(2π).

Measurements from the Planck satellite are indicated as blue dots with error-
bars. The best fitting model from scalar perturbations of a spatially flat ΛCDM
universe is shown in red, figure from [2].
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Fig. 3. Frequency-averaged T E and EE spectra (without fitting for T -P leakage). The theoretical T E and EE spectra plotted in the
upper panel of each plot are computed from the Planck TT+lowP best-fit model of Fig. 1. Residuals with respect to this theoretical
model are shown in the lower panel in each plot. The error bars show ±1� errors. The green lines in the lower panels show the
best-fit temperature-to-polarization leakage model of Eqs. (11a) and (11b), fitted separately to the T E and EE spectra.

13

Figure 2.4: The CMB temperature-polarisation cross correlation, D` = T 2
0 `(`+

1)C`/(2π). Measurements from the Planck satellite are indicated as blue dots
with errorbars. The best fitting model from scalar perturbations of a spatially
flat ΛCDM universe is shown in red, figure from [2].
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Fig. 3. Frequency-averaged T E and EE spectra (without fitting for T -P leakage). The theoretical T E and EE spectra plotted in the
upper panel of each plot are computed from the Planck TT+lowP best-fit model of Fig. 1. Residuals with respect to this theoretical
model are shown in the lower panel in each plot. The error bars show ±1� errors. The green lines in the lower panels show the
best-fit temperature-to-polarization leakage model of Eqs. (11a) and (11b), fitted separately to the T E and EE spectra.

13

Figure 2.5: The CMB polarisation power spectrum, D` = T 2
0 `(` + 1)C`/(2π).

Measurements from the Planck satellite are indicated as blue dots with error-
bars. The best fitting model from scalar perturbations of a spatially flat ΛCDM
universe is shown in red (Even though the vertical axis is labelled CEE` , it
actually shows DEE` ), figure from [2].



Chapter 3

CMB anisotropies and
polarisation

3.1 The Boltzmann equation

As we know from statistical mechanics, the distribution function of photons in
thermal equilibrium is

f(ω) =
1

eω/T − 1
, (3.1)

where ω = a|p̃| is the physical photon energy. The comoving photon energy
and momentum are denoted by p̃0 and p̃ and we have p̃ = |p̃| = p̃0 = a−1ω. As
long as interactions are sufficiently frequent to keep photons in thermal equi-
librium, this distribution is maintained. Once there are very few interactions,
the distribution is affected only by redshifting photon momenta. As we saw in
Section 1.4.1, if we define T (a) = TDaD/a after decoupling, where a(tD) ≡ aD
is the scale factor at decoupling, the distribution retains its form even after
decoupling. Of course, after decoupling T (a) is no longer a temperature in the
thermodynamical sense but merely a parameter of the distribution function.
This point is especially interesting for neutrinos: even if they may have masses
of the order of mν ∼ 1 eV � T0, their distribution is an extremely relativistic
Fermi–Dirac distribution, since this is what it was at decoupling and it has only
changed since by redshifting of neutrino momenta.

3.1.1 Generalities

We first present a brief introduction to relativistic kinetic theory. More details
can be found in [24] and [25].

In the context of general relativity on a spacetime M, for a particle species
with mass m we define the mass-shell, mass-bundle or 1-particle phase space as
the part of tangent space given by

Pm ≡ {(x, p) ∈ TM | gµν(x)pµpν = −m2} . (3.2)

This is a seven-dimensional subspace of the tangent space TM. A (three-
dimensional) ‘fibre’ of the mass-bundle at a fixed event x ∈M is defined by

Pm(x) ≡ {p ∈ TxM | gµν(x)pµpν = −m2} . (3.3)

49
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Here TxM is the tangent space of M at point x ∈M. The 1-particle distribu-
tion function is defined on Pm,

f : Pm → R : (x, p) 7→ f(x, p) . (3.4)

The distribution function is non-negative and represents the phase-space density
of particles with respect to the invariant measure dµ = 2δ(p2 + m2)|g| d4p d4x.
Here g is the determinant of the metric and p2 = gµν p̃

µp̃ν . The factor 2 is a
convention which we adopt here for convenience. We have chosen the coordinate
basis ∂µ = ∂/∂xµ in tangent space, so that p = p̃µ∂µ. We integrate over p0 to
get rid of the Dirac-δ. This yields the measure dµ on phase space in terms of
the phase space coordinates (p̃i, xµ),

dµm =
|g(x)|
|p̃0(x, p̃)| d

4x d3p̃ =
√
|g(x)|dπm d4x , where (3.5)

dπm =

√
|g(x)|

|p̃0(x, p̃)| d
3p̃ . (3.6)

Here p̃ = (p̃1, p̃2, p̃3) and x = (x0, x1, x2, x3); p̃0 = g0µp̃
µ is determined as a func-

tion of (x, p̃) via the mass-shell condition, p2 = −m2. The measure
√
|g(x)| d4x

is the usual invariant measure on M. Therefore densities on spacetime are ob-
tained by integrating over the momenta with the measure dπm. For example
the particle flux density is given by

nµ(x) =

∫
Pm(x)

√
|g(x)|

|p̃0(x, p̃)|
p̃µ

p̃0
f(x, p̃) d3p̃ . (3.7)

More importantly, the energy–momentum tensor is given by

Tµν(x) =

∫
Pm(x)

√
|g(x)|

|p̃0(x, p̃)| p̃
µp̃νf(x, p̃) d3p̃ . (3.8)

If the particles are non-interacting, they move along geodesics,

ẍµ + Γµναẋ
ν ẋα = 0 . (3.9)

Here the dot denotes the derivative with respect to proper time s defined by the
condition gµν(x)ẋµẋν = ẋ2 = −1. In the case of massless (light-like) particles,
the arc length cannot be defined. In this case the dot can be the derivative
with respect to some arbitrary affine parameter. The geodesic equation (3.9)
for massless particles, ẋ2 = 0, is invariant under affine reparametrizations, s→
As+B, where A and B are constants.

Equation (3.9) is obtained as the Euler–Lagrange equation of the Lagrangian

L(x, ẋ) =
m

2
gµν(x)ẋµẋν .

For massive particles m denotes the mass, for massless particles it is an arbitrary
non-vanishing constant normally set to one. The canonical momentum is then
given by

p̃µ =
∂L
∂ẋµ

= mẋµ and p̃µ = mẋµ .
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From the geodesic equation (3.9) we therefore have

m ˙̃pµ = −Γµναp̃
αp̃ν .

If there are no collisions, i.e. no interactions other than gravity, the distribu-
tion function remains constant in a ‘comoving’ volume element of phase space.
Therefore

d

ds
f =

[
ẋµ∂µ + ˙̃pi

∂

∂p̃i

]
f = 0 , (3.10)

↔
[
p̃µ∂µ − Γiµν p̃

µp̃ν
∂

∂p̃i

]
f = 0 . (3.11)

This is the Liouville equation for collisionless particles. If collisions cannot be
neglected, we have to replace the right-hand side by a collision term. Since
collisions involve more than one particle, in principle the collision term depends
on the 2- or even 3- and 4-particle distribution functions. To continue, one
then has to derive an equation of motion for the 2-particle distribution function
and so forth. This leads to the well known BBGKY (Bogoliubov–Born–Green–
Kirkwood–Yvon) hierarchy of equations. Often, if the particles are sufficiently
diluted, the 2-particle distribution function can be approximated by the product
of the 1-particle distribution functions,

f2(x, y,px,py) ' f(x,px)f(y,py) . (3.12)

This corresponds to the assumption that the particle positions in phase space
are uncorrelated and is called ‘molecular chaos’. In this case, the collision term
becomes an integral over the momentum of the colliding particle and we obtain
the Boltzmann equation,[

p̃µ∂µ − Γiµν p̃
µp̃ν

∂

∂p̃i

]
f = C[f ] . (3.13)

The collision integral C[f ] depends on the details of the interactions. We will
calculate it for Thomson scattering of electrons and photons.

What we have discussed so far remains valid in the context of general rela-
tivity under some conditions on the number of collisions within a small volume
which have to be satisfied in order for a coordinate-independent collision integral
to exist [24].

In the kinetic approach it is often very useful to use a tetrad basis of vector
fields, eµ(x) = eνµ∂ν with g(eµ, eν) = gαβe

α
µe
β
ν = ηµν . Here ηµν denotes the flat

Minkowski metric. With respect to such an orthonormal basis, p = pµeµ we

have |p0| = |p0| =
√
m2 − p2, where p2 =

∑3
i=1(pi)2, and dπm = d3p/|p0|, as

in flat Minkowski spacetime. This can also be written as

ηµνp
µpν = gµν p̃

µp̃ν .

3.1.2 Liouville’s equation in a FL universe

We now want to discuss the Liouville equation in a FL universe. We choose the
tetrad basis (orthonormal basis of four vector fields)

e0 = a−1∂t and ei = a−1∂i , (3.14)
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The expression for the energy–momentum tensor (with respect to the usual
coordinate basis ∂µ) in a Friedmann universe becomes

Tµν(x) = a4

∫
Pm(x)

1

|p̃0|
p̃µp̃νf(x, p̃) d3p̃ , (3.15)

where we have used |g| = a8.
The Liouville equation in a Friedmann universe in terms of the coordinates

(xµ, p̃i), is given by

p̃µ∂µf |p̃ − Γiµν p̃
µp̃ν

∂f

∂p̃i
= 0 . (3.16)

Here we write ∂µf |p̃ in order to indicate that the components p̃i are fixed when
the derivative w.r.t. xµ is taken. Next we transform Eq. (3.16) into an equation
for f with respect to the new coordinates (xµ, pi), i.e. we consider f as a func-
tion of (xµ, pi). Since the FL universe is isotropic, f depends on the momentum
only via1 p =

√
δijpipj =

√
a2δij p̃ip̃j = ap̃. The derivative of the distribu-

tion function with respect to t depends on the momentum variable which we
keep constant when performing this derivative. We denote by ∂µf |p the deriva-
tive w.r.t. xµ while keeping constant the momentum components pi and ∂µf |p̃
the derivative w.r.t. xµ while keeping constant the momentum components
p̃i. Inserting the Christoffel symbols of the FL universe (see Appendix A.3)
Γi0j = Γij0 = Hδij , we find

pµ∂µf |p −Hp0p
∂f

∂p
= 0 . (3.17)

Or, setting v = ap so that ∂0f |v = ∂0f |p −Hp(∂f/∂p) and interpreting f as a
function of (t, v), we obtain simply

∂0f(t, v) = 0 . (3.18)

The Liouville equation in a FL universe therefore just requires that the dis-
tribution function of collisionless particles changes in time only by redshifting
of the physical momentum p and therefore is simply a function of the redshift
corrected momentum v = ap. Normally we shall use the same letter f for f(t, p)
and f(v).

We now derive the linear perturbation of Liouville’s equation for scalar per-
turbations in the longitudinal gauge. The perturbed metric is given by

ds2 = −a2(1 + 2Ψ) dt2 + a2(1− 2Φ)γij dx
i dxj . (3.19)

The perturbed distribution function is f = f̄(v) +F (S)(xµ, v, θ, φ), where (θ, φ)
define the direction of the momentum p. Liouville’s equation now becomes, to
first order, in the perturbations

p̃µ∂µf − Γ̄iµν p̃
µp̃ν

∂f

∂p̃i
− δΓiµν p̃µp̃ν

∂f̄

∂p̃i
= 0 , (3.20)

1Here we use p to denote the absolute value of the physical momentum while before we
used it to denote the 4-vector p. Since these are very different objects we hope that there is
no danger of confusion.
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where the perturbations of the Christoffel symbols are given in Appendix A.4,
Eqs. (A.44)–(A.47). We We again use a tetrad basis which is now given by

e0 = a−1(1−Ψ)∂t and ei = a−1(1 + Φ)∂i . (3.21)

We want to transform Eq. (3.20) to the coordinates (xµ, pi) with pµeµ = p̃µ∂µ.
So that

p0 = a(1 + Ψ)p̃0 and pi = a(1− Φ)p̃i . (3.22)

For the transformation we use the derivatives

∂0p
i|p̃ =

[
H(1− Φ)− Φ̇

]
ap̃i so that ,

∂0f |p̃ = ∂0f |p + [H(1− Φ)− Φ̇]ap̃i
∂f

∂pi
,

∂0f |p̃ = ∂0f |p + [H− Φ̇]p
∂f

∂p
, (3.23)

p̃j∂jf |p̃ = p̃j∂jf |p − p̃j∂jΦp
∂f̄

∂p
. (3.24)

As in the previous section, we indicate the momentum variable kept constant.
With the help of the Liouville equation for f̄ , we then find

p̃µ∂µF
(S)
∣∣∣
p
−Hp̃0p

∂F (S)

∂p

= a−1v
df̄

dv
[pi∂iΦ + p0Φ̇] + a−1δΓiµνp

µpν
∂f̄

∂pi
. (3.25)

Inserting the perturbation of the Christoffel symbols (Eqs. (A.44)–(A.47) of
Appendix A.4), the right-hand side becomes

a−1v
df̄

dv

[
−p0Φ̇ +

(p̃0)2

p̃2
pk∂kΨ

]
,

where p̃2 =
∑
k(p̃k)2 and we have used pi(∂f̄/∂pi) = v(df̄/dv).

We now rewrite the Liouville equation in terms of a new variable defined
by F = F (S) +Φv(df̄/dv). In some of the literature (Hu & Sugiyama, 1995 [26];
Hu & White, 1997 [27]) the variable F (S) is used directly. Note, however, that
F and F (S) only differ by an isotropic (direction-independent) term. Hence,
once we determine the CMB anisotropies this difference will only be present in
the unmeasurable monopole term. The advantage of the variable F will become
clear later.

Setting p̃j = p̃nj with 1 = δijn
inj we have to lowest order, p̃ = p/a = v/a2.

Defining also

q = a2p̃0 = aω = a
√
p2 +m2 =

√
v2 + a2m2 , (3.26)

we can rewrite the Liouville equation for the function F(t,x, v,n) in the form

q∂0F + vni∂jF = ni∂i
[
q2Ψ + v2Φ

] df̄
dv

. (3.27)
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Here vj = apj are the redshift corrected physical momentum components and
F is understood as a function of the variables xµ and vj ≡ vnj . Since F and
Φ , Ψ are already perturbations, we can use the background relations between
p and v as well as q.

This is the Liouville equation for collisionless (massive) particles. The equa-
tion can be simplified in the massless case where q = v, which is relevant for
the study of photons.

3.1.3 The Liouville equation for massless particles

The Liouville equation derived in the previous section is actually more impor-
tant for massive collisionless particles, e.g., massive neutrinos, than for massless
particles. In the massless (or ultra-relativistic) case we have q = v and the equa-
tions simplify significantly. Let us also introduce the ‘longitudinal temperature
fluctuation’ for a thermal bath of massless particles. ‘Longitudinal’ indicates
that we consider perturbations in the longitudinal gauge. We integrate the
perturbed distribution function over energy so that only the dependence on
momentum directions, n, remains,

4π

a4

∫
v3f dv ≡ ρ̄ (1 + 4∆(n)) . (3.28)

We call the variable ∆(n) the longitudinal temperature fluctuation in direction
n. ∆(n) depends also on (t,x) which we suppress here for brevity. This def-
inition is motivated by the following consideration: for a Planck distribution
of photons which has a slightly direction-dependent temperature, but is other-
wise unperturbed (especially, it has a perfect blackbody spectrum, fB(p, T ) =
(exp(p/T ) + 1)−1), the perturbed distribution function can be expanded to first
order as

f(p,n) = fB(p, T (n)) = fB(p, T̄ )− δT

T̄
p∂pfB(p, T̄ ) . (3.29)

Observe that fB is purely a function of p/T so that ∂T fB = −(p/T )∂pfB . The
energy density of this photon distribution is given by

ργ =
1

a4

∫
v3f(v,n) dv dΩn = ρ̄γ −

1

a4

∫
δT

T̄
v4∂vfB(v, T̄ ) dv dΩn

= ρ̄γ

(
1 +

4

4π

∫
δT

T̄
dΩn

)
= ρ̄γ

(
1 +

1

π

∫
∆(n) dΩn

)
. (3.30)

For the third equals sign we have performed an integration by parts to evaluate
the integral over v. We shall see that the Liouville equation for photons leads to
a perturbation which can be described entirely by such a direction-dependent
temperature fluctuation.

The fact that the perturbation of the photon distribution can be described
in such a simple way is not surprising. It is an expression of the ‘a-chromaticy’
of gravity which is a consequence of the equivalence principle: the deflection
and redshift of a photon in a gravitational field are independent of its energy.

As before, we study only scalar perturbations. The corresponding expres-
sions for vector and tensor perturbations are found e.g. in [9]. For massless
particles, v = q, the Liouville equation (3.27) reduces to

∂0F + ni∂iF = nj [Ψ,j + Φ,j ] v
df̄

dv
. (3.31)
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We define

M(S)(t,x,n) =
π

a4ρ̄

∫
v3F dv . (3.32)

In terms of the temperature fluctuation ∆(n) defined in Eq. (3.28) we get

M(S)(n) = ∆(S)(n)− Φ . (3.33)

Up to a (irrelevant) monopole contribution, the momentum integrated distri-
bution function M is simply the temperature perturbation in the longitudinal
gauge. It is not surprising that the monopole terms of M(n) and ∆(n) do not
agree because they are gauge dependent. Also the dipole terms might differ
since they too are gauge dependent. (In a gauge with non-vanishing shear, the
dipole contributions to ∆ and M do differ.)

Integrating the Liouville equation (3.31) over momenta and performing an
integration by parts on the right-hand side, we obtain the evolution equation
for M.

For the scalar part of the distribution function we obtain

∂tM(S) + ni∂iM(S) = −nj [Ψ,j + Φ,j ] . (3.34)

This equation can be solved formally for any given source term Φ + Ψ. One
easily checks that the solution with initial condition M(S)(tin,x,n) is

M(S)(t,x,n) = M(S) (tin,x− n(t− tin),n)

−
∫ t

tin

dt′ ni∂i(Ψ + Φ)(t′,x− n(t− t′)) . (3.35)

Using

d

dt′
(Ψ + Φ)(t′,x− n(t− t′)) = ∂t′(Ψ + Φ)(t′,x− n(t− t′))

+ni∂i(Ψ + Φ)(t′,x− n(t− t′)) ,

we can replace the second term on the right-hand side to obtain

M(S)(t,x,n) = M(S) (tin,x− n(t− tin),n)

+ (Ψ + Φ)(tin,x− n(t− tin))

+

∫
dt′ ∂t′(Ψ + Φ)(t′,x− n(t− t′)) + monopole . (3.36)

By ‘monopole’ we denote an uninteresting n-independent contribution which
does not affect the CMB anisotropy spectrum. The Bardeen potentials Ψ and
Φ, however, are given via Einstein’s equation in terms of the perturbations of the
energy–momentum tensor which contain contributions from the photons which
are in turn the momentum integrals ofM given below. Therefore, even though
it might look like it, this is not really a solution of the Liouville equation. The
term on the right-hand side also depends on M(S).

Let us compare Eq. (3.36) with the result from the integration of light-
like geodesics after decoupling in Eqs. (2.79) and (2.81). Here we have solved
the Liouville equation which also does not take into account the scattering of
photons and is therefore equivalent to our approach in Chapter 2. They both
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correspond to the ‘sudden decoupling’ approximation, where we assume that
photons behave like a perfect fluid before decoupling and are entirely free after
decoupling. This is a relatively good approximation for all scales which are
much larger than the duration of the process of recombination which we shall
estimate in the next section. The comparison with Eqs. (2.79) and (2.81) yields

M(S) (tdec,x− n(t− tdec),n) =

(
1

4
Dg + n ·V(b)

)
(tdec,x− n(t− tdec)) ,

(3.37)
and

M(S)(t,x,n) ≡ δT

T
(t,x,n) . (3.38)

In other words, the temperature fluctuation defined via the energy shift of pho-
tons moving along geodesics corresponds to M(S) while the temperature fluc-
tuation defined via the energy density fluctuation in longitudinal gauge corre-
sponds to ∆(S) =M(S) + Φ. In addition to the energy shift, the latter includes
a contribution from the perturbation of the volume element,

√
|det(gij)| d3x =

a3(1 − 3Φ) d3x. The distinction is not very important since it is a monopole
which does not show up in the angular power spectrum. However, the corre-
sponding evolution equations are of course different.

The initial condition in the sudden decoupling approximation is a distribu-
tion function which contains only a monopole and a dipole. Higher multipoles
do not build up in a perfect fluid. In the next section we shall take into account
the process of decoupling by studying the Boltzmann equation.

The scalar perturbations of the energy–momentum tensor of the radiation
fluid for a given Fourier mode k can be found from (3.15) and the definitions of
the corresponging perturbation variables,

Dg = 2

∫ 1

−1

M(S) (µ) dµ = 4M(S)
0 , (3.39)

V =
3i

2

∫ 1

−1

µM(S)(µ) dµ = 3M(S)
1 , (3.40)

Γ = 0 , (3.41)

Π = 3

∫ 1

−1

(
1− 3µ2

)
M(S)(µ) dµ = 12M(S)

2 . (3.42)

The general definition of M(S)
` will be given below. We have assumed that

M(S)(t,k,n) depends on the direction n only via µ = k̂ · n. We have chosen
the z-direction proportional to k so that µ = cos θ and have performed the
integration over ϕ which simply gives a factor 2π. For statistically isotropic
perturbations there is no other vector which could single out a direction and
therefore this assumption reflects statistical isotropy.

The exact equality w = c2s = 1
3 does not allow for any entropy perturbation

in a pure radiation fluid.

Exercice 10 Compute Dg and V explicitly from M(S)(n).
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The Liouville equation in Fourier space

A Fourier mode of M(t,x,n) is given by

M(t,k,n) ≡
∫
d3x e−ik·xM(t,x,n) , and its inverse is

M(t,x,n) =
1

(2π)3

∫
d3k eik·xM(t,k,n) .

The Liouville equation for a Fourier mode is given by

(∂t + ikµ)M(t,k,n) = SG(t,k, µ) (≡ −ikµ(Φ + Ψ)(t,k) ) , (3.43)

where µ = k̂ ·n is the cosine of the angle between the unit vectors k̂ = k/k and
n. While the first equal sign is valid for all types of perturbations, the term in
parenthesis gives SG for scalar perturbations. The general (formal) solution to
this equation for a given source term SG can be written as

M(t,k,n) = e−ikµ(t−tin)M(tin,k,n) +

∫ t

tin

dt′e−ikµ(t−t′)SG(t′,k,n) . (3.44)

The function SG can be decomposed into scalar, vector and tensor perturbations.
As already mentioned, the source term usually depends onM via Einstein’s

equations and Eq. (3.44) is not really a solution but simply corresponds to
rewriting Eq. (3.43) as an integral equation. But as we shall see, this has
serious advantages especially for numerical computations.

From Eq. (3.44) using the decomposition [6]

eik·n(t−tin) =

∞∑
`=0

(2`+ 1)i`j`(k(t− tin))P`(µ) ,

one finds the CMB power spectrum, exactly as in Eqs. (2.100)–(2.104) and
(2.110). Before we do this, we study Thomson scattering which is the relevant
scattering process just before recombination. We will then derive the power
spectrum taking into account this scattering process.

3.1.4 The Boltzmann equation

At very early times, long before recombination, scattering of photons with free
electrons is very frequent. During recombination, however, the number density
of free electrons, i.e. of electrons not bound to an atom, drops drastically and
soon the mean free path of photons is much larger than the Hubble scale so
that, effectively, photons do not scatter any more. In the previous treatment
we assumed this process of decoupling to be instantaneous; now we want to
reconsider it in more detail.

The only scattering process which is relevant briefly before decoupling, i.e.,
at temperatures of a few electron volts and less, is elastic Thomson scattering,
where the photon energy is conserved and only its direction is modified. The
Thomson scattering rate is

ΓT = σTne ,

where σT = 6.6524× 10−25 cm2 is the Thomson scattering cross section and ne
is the number density of free electrons.
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Before decoupling, in a matter dominated universe, we find

ΓT ' 7× 10−30 cm−1Ωbh
2(1 + z)3 while

H ' 10−28 cm−1h(1 + z)3/2

ΓT /H ' 0.07Ωbh(z + 1)3/2 .

Hence before recombination, which corresponds to redshifts z > 1100, say,
Thomson scattering is much faster than expansion. During recombination, the
free electron density drops and eventually the Thomson scattering rate drops
below the expansion rate. To take scattering into account we add a so-called
‘collision integral’ to the right-hand side of the Liouville equation, which leads
us to the Boltzmann equation. To learn more about the Boltzmann equation
and the approximations going into it see, e.g., [28]. The collision integral C[f ]
takes into account that the 1-particle distribution function can change due to
collisions which scatter a particle into, f+, or out of, f−, a volume element
d3x d3p in phase space,[

p̃µ∂µ − Γiαβ p̃
αp̃β

∂

∂p̃i

]
f = C[f ] =

df+

dt
− df−

dt
. (3.45)

Here f+ and f− denote the distribution of photons scattered into and out of the
beam of photons at position x at time t with momentum p respectively.

This collision term (integrated over photon energies) is calculated in detail
in [9] with the result

C[M] = aσTne

[
1

4
D(γ)
g −M− niV (b)

i +
1

2
nijM

ij

]
, (3.46)

where ne denotes the free electron density. The pre-factor aσTne is very large
before recombination and becomes negligibly small after recombination when
photons effectively decouple from electrons. Here

nij = ninj −
1

3
δij and

Mij =
3

8π

∫
nijM(n)dΩn . (3.47)

Using (3.43) and (3.46) we can write the formal solution of the Boltzmann
equation as

M(t,k,n) = e−ikµ(t−tin)−κ(tin,t)M(tin,k,n)

+

∫ t

tin

dt′ eikµ(t′−t)−κ(t′,t)

[
SG(k,n) + κ̇

(
1

4
D(γ)
g (k)

−niV (b)
i (k) +

1

2
nijM

ij(k,n)

)]
. (3.48)

Here

κ(t1, t2) =

∫ t2

t1

aσTne dt is the optical depth and (3.49)

κ̇(t1, t2) = ∂t2κ(t1, t2) = aσTne(t2) (3.50)
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Figure 3.1: The visibility function g(t) = ∂tκ(t, t0) exp(−κ(t, t0) (left) is plotted
in units of H0 as a function of redshift. For comparison we show also κ(z) ≡
κ(t(z), t0) (right).

is independent of the initial value t1. In Fig. 3.1 we plot κ(t, t0) as well as the
visibility function g(t) = ∂tκ(t, t0) exp(−κ(t, t0) as a function of t.

At late time, z ' 6 the uv radiation from starlight re-ionizes the Universe
leading to a slight deviation of κ(t, t0) from zero at low redshift and a slight
bump in g(z). But the amplitude of this optical depth due to reonization,
called τreion is about τreion ∼ 0.05 which is not visible on the scales of Fig. 3.1.

Since the direction dependence enters the evolution equation only via the
cosine µ = k̂·n, we assume consistently that this is the only direction dependence
of the Fourier transformM(S)(t,k,n), so thatM(S)(t,k,n) =M(S)(t,k, µ). It

therefore makes sense to expand M(S) in Legendre polynomials,

M(S)(t,k, µ) =
∑

(2`+ 1)(−i)`M(S)
` (t,k)P`(µ) . (3.51)

Using the orthogonality and normalization of Legendre polynomials, we obtain
the expansion coefficients,

M(S)
` (t,k) =

i`

2

∫ 1

−1

dµM(S)(t,k, µ)P`(µ) . (3.52)

Statistical homogeneity and isotropy imply that the coefficientsM` for different
values of ` and k are uncorrelated,

〈
M(S)

` (t,k)M(S)∗
`′ (t,k′)

〉
= M

(S)
` (t, k)(2π)3 δ3(k− k′) δ``′ . (3.53)

We want to relate the spectrum M
(S)
` (t, k) to the scalar CMB power spectrum
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C
(S)
` . We use the definition given in Eq. (2.93),〈

∆T

T
(t0,x0,n)

∆T

T
(t0,x0,n

′)

〉(S)

=
1

4π

∑
`

(2`+ 1)C
(S)
` P`(n · n′)

=
1

(2π)6

∫
d3k d3k′

∑
`1`2

(2`1 + 1)(2`2 + 1)(−i)`1−`2eix0·(k−k′)

×
〈
M(S)

`1
(t0,k)M(S)∗

`2
(t0,k

′)
〉
P`1(µ)P`2(µ′) ,

where µ = k̂ · n and µ′ = k̂′ · n′. With Eq. (3.53) we obtain

1

4π

∑
`

(2`+ 1)C
(S)
` P`(n · n′)

=
1

(2π)3

∑
`1

∫
d3kM

(S)
`1

(t0, k)(2`1 + 1)2P`1(µ)P`1(µ′)

=
2

π

∑
`1

∫
d3kM

(S)
`1

(t0, k)
∑
m1m2

Y`1m1
(n)Y ∗`1m1

(k̂)Y ∗`1m2
(n′)Y`1m2

(k̂)

=
2

π

∑
`1m1

∫
dk k2M

(S)
`1

(t0, k)Y`1m1
(n)Y ∗`1m1

(n′)

=
1

2π2

∑
`1

(∫
dk k2M

(S)
`1

(t0, k)

)
(2`1 + 1)P`(n · n′) .

In several steps in this derivation we have applied the addition theorem of
spherical harmonics. Comparing the first and the last expressions in the series
of equalities above, we infer

C
(S)
` =

2

π

∫
dk k2M

(S)
` (k) . (3.54)

To calculate the CMB power spectrum, we therefore have to determine the
random variables M`. We now derive a hierarchical set of equations for them,
the so-called Boltzmann hierarchy.

With Eqs. (3.39)–(3.42), Eq. (3.52) and the explicit expressions of the Leg-
endre polynomials for ` ≤ 2, one finds the relations of the scalar pertur-
bations of the photon energy–momentum tensor to the expansion coefficients
M`(t,k), ` ≤ 2,

D(γ)
g = 4M(S)

0 , (3.55)

V (S)
γ = 3M(S)

1 , (3.56)

Π(S)
γ = 12M(S)

2 . (3.57)

Exercice 11 Using the explicit expressions of the Legendre polynomials for ` ≤
2,derive eqs. (3.55) to (3.57).

Inserting Eq. (3.51) in the definition of Mij and choosing the coordinate
system such that k points in the z direction one can easily compute the integrals
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M33 = −M(S)
2 and M11 = M22 = M(S)

2 /2 and all off diagonal contributions
vanish. With n2

1 + n2
2 = 1− µ2 this yields

1

2
nijM

ij = −1

2
M(S)

2 P2(µ) .

Also using the fact that for scalar perturbations V = ik̂V we obtain the scalar
Boltzmann equation

(∂t + ikµ)M(S)(k,n) = ikµ(Φ + Ψ)

+ κ̇

[
1

4
D(γ)
g (k)−M(S) − iµV (b)(k)− 1

2
M2(k)P2(µ)

]
.

(3.58)

With the recurrence relation (see [6])

µP`(µ) =
`+ 1

2`+ 1
P`+1(µ) +

`

2`+ 1
P`−1(µ) ,

we can convert Eq. (3.58) into the following hierarchy of equations

Ṁ(S)

` + k
`+ 1

2`+ 1
M(S)

`+1 − k
`

2`+ 1
M(S)

`−1 + κ̇M(S)
`

= δ`0κ̇M(S)
0 +

1

3
δ`1

[
−k(Φ + Ψ) + κ̇V (b)

]
+ κ̇

1

10
δ`2M(S)

2 . (3.59)

Here the source terms on the right-hand side contribute only for ` = 0, 1 and

` = 2 respectively. In Eq. (3.59) each variable M(S)
` couples to its neighbours,

M(S)
`−1 andM(S)

`+1 via the left-hand side. From Eq. (3.58) it is clear, that the left-
hand side actually just describes the free streaming of photons after decoupling.

If we want to determine the CMB power spectrum via the Boltzmann hi-
erarchy, Eq. (3.59), in order to calculate, e.g., C1000 we have to know all the

other M(S)
` s which may influence M(S)

1000 via free streaming during a Hubble
time, which is certainly more than 1000. Furthermore, at the beginning, when

coupling is still relatively tight, we may simply take into account M(S)
0 and

M(S)
1 given by the perfect fluid initial conditions and set all the other M(S)

` s
to zero. They then gradually build up mainly due to free streaming. But using

the Boltzmann hierarchy (3.59), we cannot calculate M(S)
1000 with any accuracy

if we have not determined all theM(S)
` s with ` < 1000 with the same (or rather

better) accuracy.
On the other hand, if we knew the source term, the right-hand side of Eq. (3.59),

we could simply write down the solution, Eq. (3.48). As the source term only
depends on the first two moments of the hierarchy, it can usually be obtained
with a precision of about 0.1%, see [29], by solving the hierarchy only up to
` ' 10. Inserting the corresponding moments into Eq. (3.48) one finds

M(S)(t0,k, µ) = e−ikµ(t0−tin)−κ(tin,t0)M(S)(tin,k, µ)

+

∫ t0

tin

dt eikµ(t−t0)−κ(t,t0) ×
[
ikµ(Φ + Ψ)(k) + κ̇

(
1

4
D(γ)
g (k)

−iµV (b)(k)− 1

2
P2(µ)M(S)

2 (k, t)

)]
.
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If the only µ-dependent term was the exponential, we could use its representa-
tion in terms of Legendre polynomials and spherical Bessel functions (see [6])

to isolate M(S)
` . With this in mind, we use

eikµ(t−t0)µf(t) = −ik−1∂t

(
eikµ(t−t0)

)
f(t) ,

to get rid of all the µ-dependence in the term in square brackets above. Further-
more, we move the derivative ∂t′ onto the function f via integration by parts.
We want to choose the initial time tin long before decoupling and t0 denotes to-
day. Therefore, κ(tin, t0) is huge and we can completely neglect the term from
the initial condition. Since early times do not contribute, we can formally start
the integral at tin = 0. We can also neglect the boundary terms at t0 since the
terms from t′ = t0 contribute only to the uninteresting monopole and dipole
terms.

Let us introduce the visibility function g, defined by

g(t) ≡ (aσTne)(t)e
−κ(t,t0) ≡ ∂tκ(t, t0)e−κ(t,t0) . (3.60)

This function is very small at early times, when the optical depth, κ is very
large. During decoupling, κ becomes smaller but also the pre-factor, aσTne = κ̇
then becomes small. Therefore, g is strongly peaked during decoupling and
small both before and after, see Fig. 3.1. With the above mentioned integration
by parts we then find

M(S)(t0,k, µ) =

∫ t0

0

dt eikµ(t−t0)S(S)(t,k) , (3.61)

with

S(S) = −e−κ(Φ̇ + Ψ̇) + g

(
Φ + Ψ + k−1V̇ (b) +

1

4
D(γ)
g +

1

4
M2

)
+ k−1ġV (b) − 3

4k2

d2

dt2
(
gM(S)

2

)
. (3.62)

This source term now no longer depends on µ. Rewriting the exponential in
terms of Legendre polynomials and spherical Bessel functions, we now obtain
simply

M(S)
` (t0,k) =

∫ t0

0

dt j`(k(t0 − t))S(S)(t,k) . (3.63)

Together with Eqs. (3.53) and (3.54) this yields the scalar contributions to the
CMB power spectrum, once the scalar source term is given.

So far, we still have neglected the effect of polarization which introduces
considerable additional complications. We shall discuss it in the next section.

The source term contains Φ and Ψ which we obtain from the Einstein equa-
tions where M0, M1 and M2 enter on the right hand side. For a numerical
calculation of the CMB anisotropy power spectrum, this method has become
the method of choice: first, the source term is calculated via the Boltzmann
hierarchy truncated at about ` = 10. Then, the C`s are computed via the line-
of-sight integral (3.63) followed by integration over k, Eq. (3.54). Free streaming
is now taken care of by the spherical Bessel functions which can be computed
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just once and then be stored. This is especially useful if one wants to compute
many models for cosmological parameter estimation employing a Monte Carlo
method, see [9], Chapter 9.

The C` spectrum for tensor perturbations is derived in a similar matter,
see [9] for details.

3.2 Polarisation

The Thomson scattering cross section depends on the polarization of the out-
going photon. If its polarization vector lies in the scattering plane, the cross
section is proportional to cos2 β, where β denotes the scattering angle. If, how-
ever, the outgoing photon is polarized normal to the scattering plane, no such
reduction by a factor cos2 β occurs (see [30], Section 14.7). If photons come in
isotropically from all directions, this does not lead to any net polarization of the
outgoing radiation. However, if, for a fixed outgoing direction, the intensity of
incoming photons from one direction is different from the intensity of photons
coming in at a right angle with respect to the first direction and with respect to
the direction of the outgoing photon, see Fig. 3.2, this anisotropy leads to some
polarization of the outgoing photon beam. As is clear from the figure, it is the
quadrupole anisotropy in the reference frame of the scattering electron which is
responsible for polarization.

e-

Figure 3.2: More incoming photons from the left than from the top (indicated
in the figure with longer polarization directions), lead to a net polarization of
the outgoing photon beam. In the situation shown above, where the scattering
angle is π/2, the photons coming in from the left are scattered only if polar-
ized vertically, while the photons coming in from the top are scattered only if
polarized horizontally. In this way, an unpolarized photon distribution which
exhibits a quadrupole anisotropy generates polarization on the surface of last
scattering.
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We consider an electromagnetic wave propagating in direction n. We define
the polarization directions εε(1) and εε(2) such that

(
εε(1), εε(2), n

)
form a right-

handed orthonormal system. The electric field of the wave is of the form E =
E1εε

(1) + E2εε
(2). (The polarizations εε(1) and εε(2) are not to be confused with

e(1) and e(2) which form an orthonormal system with the wave vector k.) The
polarization tensor of an electromagnetic wave is defined as

Pij = P̃abεε(a)
i εε

(b)
j , with P̃ab = E∗aEb . (3.64)

P̃ab is a hermitian 2× 2 matrix and can therefore be written as

P̃ab =
1

2

[
Iσ

(0)
ab + Uσ

(1)
ab + V σ

(2)
ab +Qσ

(3)
ab

]
(3.65)

=
1

2
Iσ

(0)
ab + Pab ,

where σ(α) denote the Pauli matrices and the four real functions of the photon
direction n, I, U , V and Q are the Stokes parameters.

σ(0) =

(
1 0
0 1

)
, σ(1) =

(
0 1
1 0

)
,

σ(2) =

(
0 −i
i 0

)
, σ(3) =

(
1 0
0 −1

)
. (3.66)

In terms of the electric field, the Stokes parameters are

I = |E1|2 + |E2|2 , Q = |E1|2 − |E2|2 ,
U = (E∗1E2 + E∗2E1) = 2Re(E∗1E2) , V = 2Im(E∗1E2) . (3.67)

I is simply the intensity of the electromagnetic wave. Q represents the amount
of linear polarization in directions εε(1) and εε(2), i.e., Q is the difference between
the intensity of radiation polarized along εε(1) minus the intensity polarized in
direction εε(2). The parameters Q and U describe the symmetric traceless part
of the polarization tensor while V multiplies the anti-symmetric Pauli matrix
σ(2). This part describes a phase difference between E1 and E2 which results
in circular polarization. This is best seen by expressing Pab in terms of the
helicity basis εε(±) = (1/

√
2)
(
εε(1) ± iεε(2)

)
, where one finds that V is the difference

between the left- and right-handed circular polarized intensities (for details see
e.g. [30]). As we shall see below, Thomson scattering does not introduce circular
polarization. We therefore expect the V -Stokes parameter of the CMB radiation
to vanish. We neglect it in the following discussion. If V = 0, we have Pab =
P∗ab = Pba. Hence Pab is a real symmetric matrix.

We often also use the quantities

P ≡ P++ = 2Pabεε(+)
a εε

(+)
b = Q+ iU, and (3.68)

P̄ ≡ P−− = 2Pabε̄ε(+)
a ε̄ε

(+)
b = 2Pabεε(−)

a εε
(−)
b = Q− iU . (3.69)

Up to a factor of 2, these are the components of the polarization tensor expressed
in the helicity basis. One easily verifies that the off-diagonal terms vanish since
they are proportional to V , P+− = P−+ ∝ V = 0.
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The intensity is proportional to the energy density of the CMB, ρ = 1
8π I

and therefore to our perturbation variable M = δT/T = 1
4δρ/ρ = 1

4δI/I.
Correspondingly we define the dimensionless Stokes parameters

Q ≡ Q

4I
and U ≡ U

4I
. (3.70)

Rotating the basis
(
εε(1), εε(2)

)
by an angle ψ around the direction n we obtain

εε(1)′ = cosψεε(1) + sinψεε(2) and εε(2)′ = cosψεε(2) − sinψεε(1) so that the coef-
ficients with respect to the rotated basis are E′1 = E1 cosψ − E2 sinψ and
E′2 = E2 cosψ + E1 sinψ. For the Stokes parameters this implies

I ′ = I , V ′ = V and

Q′ = Q cos 2ψ − U sin 2ψ , U ′ = U cos 2ψ +Q sin 2ψ , (3.71)

or more simply

Q′ ± iU ′ = e±2iψ(Q± iU) . (3.72)

Hence Q± iU transform like helicity-2 variables with a magnetic quantum num-
ber±2 under rotations around the n axis. They depend not only on the direction
n, but also on the orientation of the polarization basis

(
εε(1), εε(2)

)
. For exam-

ple, when rotating the polarization basis by π/4 we turn U into Q and Q into

−U . Hence U measures the linear polarization in the basis
(
εε(1)′ , εε(2)′

)
which

is rotated by −π/4 from the original basis.
It is not very convenient to work with these basis dependent amplitudes.

First of all, the results will depend on the arbitrary choice of εε(1) and εε(2).
Therefore, we shall not work directly with the Stokes parameters Q and U . But
we make use of the spin weighted spherical harmonic functions sY`m(n) which
are defined for each integer s with |s| ≤ ` and have the property that they
transform under rotations about n by an angle ψ like sY`m(n)→ eisψ sY`m(n).
The spin weighted spherical harmonics are the components of a symmetric rank
|s| tensor field defined on the tangent space of the sphere in the canonical basis
(eϑ ≡ ∂ϑ, eϕ ≡ (1/sinϑ)∂ϕ). Note that (eϑ, eϕ) are not well defined at the
north and south poles. Setting

e± =
1√
2

(eϑ ∓ ieϕ) ,

sY`m(n) transforms like the + · · ·+ component of a rank s tensor, if s > 0
and like the − · · ·− component of a rank |s| tensor, if s < 0. More details
about spin weighted spherical harmonics and the full derivation of the results
presented here are found in [9].

With respect to the helicity basis e(±), the dimensionless parameters Q± iU
can be expanded as

(Q± iU)(n) =

∞∑
`=2

∑̀
m=−`

a
(±2)
`m ±2Y`m(n) , (3.73)

=

∞∑
`=2

∑̀
m=−`

(e`m ± ib`m) ±2Y`m(n) . (3.74)
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Figure 3.3: E-polarization (left) and B-polarization (right) patterns are shown
around the photon direction indicated as the centre. E-polarization can be
either radial or tangential, while B-polarization is clearly of curl type.

Hence

e`m =
1

2

(
a

(2)
`m + a

(−2)
`m

)
, b`m =

−i
2

(
a

(2)
`m − a

(−2)
`m

)
. (3.75)

Under a ‘parity’ transformation, n → −n the basis vectors e(±) transform

as e(±) → e(∓). Hence the coefficient a
(2)
`m turns into a

(−2)
`m and a

(−2)
`m → a

(2)
`m so

that e`m remains invariant while b`m changes sign.
As we have expanded M in Fourier components and Legendre polynomials

one can now expand Q± iU in Fourier components and spin weighted spherical
harmonics and derive the Boltzmann equation for the corresponding components
which we call

±2A(m)
` (t,k) = E(m)

` (t,k)± iB(m)
` (t,k) .

Here E again is parity even while B is parity odd. Scalar perturbations only
generate E-polarisation which corresponds to a gradient field on the sphere while
B-polarisation is a curl, see Fig. 3.3.

The Boltzmann equation for (M, E ,B) now couplesM and E for vector and
tensors perturbations, the evolution of B is also sources by E , however, scalar
perturbations do not generate B. More details and a derivation of the Boltz-
mann equation using the total angular momentum method can be found in [9].
Fast codes like
CAMB (available at https://camb.readthedocs.io/en/latest/) or
class (available at https://lesgourg.github.io/class public/class.html)
calculate these CMB power spectra numerically with sub-percent precision for
given cosmological parameters in a few seconds up to ` ∼ 2000.

The detection of B-polarisation would be very important as (within the
standard model) it is nearly entire due to gravitational waves from inflation.

Exercice 12 For an electric field normal to n given by Ei(n) = ∇if(n) +
εij∇jg(n) determine the E and B polarization. Here f and g are real functions
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Planck Collaboration: Gravitational lensing by large-scale structures with Planck

Planck at the expected level. In Sect. 3.3, we cross-correlate the
reconstructed lensing potential with the large-angle temperature
anisotropies to measure the CT�

L correlation sourced by the ISW
e↵ect. Finally, the power spectrum of the lensing potential is pre-
sented in Sect. 3.4. We use the associated likelihood alone, and
in combination with that constructed from the Planck temper-
ature and polarization power spectra (Planck Collaboration XI
2015), to constrain cosmological parameters in Sect. 3.5.

3.1. Lensing potential

In Fig. 2 we plot the Wiener-filtered minimum-variance lensing
estimate, given by

�̂WF
LM =

C��, fid
L

C��, fid
L + N��

L

�̂MV
LM , (5)

where C��, fid
L is the lensing potential power spectrum in our fidu-

cial model and N��
L is the noise power spectrum of the recon-

struction. As we shall discuss in Sect. 4.5, the lensing potential
estimate is unstable for L < 8, and so we have excluded those
modes for all analyses in this paper, as well as in the MV lensing
map.

As a visual illustration of the signal-to-noise level in the lens-
ing potential estimate, in Fig. 3 we plot a simulation of the MV
reconstruction, as well as the input � realization used. The re-
construction and input are clearly correlated, although the recon-
struction has considerable additional power due to noise. As can
be seen in Fig. 1, even the MV reconstruction only has S/N ⇡ 1
for a few modes around L ⇡ 50.

The MV lensing estimate in Fig. 2 forms the basis for a
public lensing map that we provide to the community (Planck
Collaboration I 2015). The raw lensing potential estimate has a
very red power spectrum, with most of its power on large angular
scales. This can cause leakage issues when cutting the map (for
example to cross-correlate with an additional mass tracer over a
small portion of the sky). The lensing convergence  defined by

LM =
L(L + 1)

2
�LM , (6)

has a much whiter power spectrum, particularly on large angular
scales. The reconstruction noise on  is approximately white as
well (Bucher et al. 2012). For this reason, we provide a map
of the estimated lensing convergence  rather than the lensing
potential �.

3.2. Lensing B-mode power spectrum

The odd-parity B-mode component of the CMB polarization is
of great importance for early-universe cosmology. At first order
in perturbation theory it is not sourced by the scalar fluctuations
that dominate the temperature and polarization anisotropies, and
so the observation of primordial B-modes can be used as a
uniquely powerful probe of tensor (gravitational wave) or vec-
tor perturbations in the early Universe. A detection of B-mode
fluctuations on degree angular scales, where the signal from
gravitational waves is expected to peak, has recently been re-
ported at 150 GHz by the BICEP2 collaboration (Ade et al.
2014). Following the joint analysis of BICEP2 and Keck Array
data (also at 150 GHz) and the Planck polarization data, primar-
ily at 353 GHz (BICEP2/Keck Array and Planck Collaborations
2015), it is now understood that the B-mode signal detected
by BICEP2 is dominated by Galactic dust emission. The joint

�̂WF (Data)

Fig. 2 Lensing potential estimated from the SMICA full-mission
CMB maps using the MV estimator. The power spectrum of
this map forms the basis of our lensing likelihood. The estimate
has been Wiener filtered following Eq. (5), and band-limited to
8  L  2048.

�̂WF (Sim.)

Input � (Sim.)

Fig. 3 Simulation of a Wiener-filtered MV lensing reconstruc-
tion (upper) and the input � realization (lower), filtered in the
same way as the MV lensing estimate. The reconstruction and
input are clearly correlated, although the reconstruction has con-
siderable additional power due to noise.

analysis gives no statistically-significant evidence for primor-
dial gravitational waves, and establishes a 95 % upper limit
r0.05 < 0.12. This still represents an important milestone for
B-mode measurements, since the direct constraint from the B-
mode power spectrum is now as constraining as indirect, and
model-dependent, constraints from the TT spectrum (Planck
Collaboration XIII 2015).

In addition to primordial sources, the e↵ect of gravitational
lensing also generates B-mode polarization. The displacement of
lensing mixes E-mode polarization into B-mode as (Smith et al.
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Fig. 6 Planck 2015 full-mission MV lensing potential power spectrum measurement, as well as earlier measurements using the
Planck 2013 nominal-mission temperature data (Planck Collaboration XVII 2014), the South Pole Telescope (SPT, van Engelen
et al. 2012), and the Atacama Cosmology Telescope (ACT, Das et al. 2014). The fiducial ⇤CDM theory power spectrum based on
the parameters given in Sect. 2 is plotted as the black solid line.

In addition to the priors above, we adopt the same sampling
priors and methodology as Planck Collaboration XIII (2015),†
using CosmoMC and camb for sampling and theoretical predic-
tions (Lewis & Bridle 2002; Lewis et al. 2000). In the ⇤CDM
model, as well as ⌦bh2 and ns, we sample As, ⌦ch2, and the
(approximate) acoustic-scale parameter ✓MC. Alternatively, we
can think of our lensing-only results as constraining the sub-
space of ⌦m, H0, and �8. Figure 7 shows the corresponding
constraints from CMB lensing, along with tighter constraints
from combining with additional external baryon acoustic oscil-
lation (BAO) data, compared to the constraints from the Planck
CMB power spectra. The contours overlap in a region of accept-
able Hubble constant values, and hence are compatible. To show
the multi-dimensional overlap region more clearly, the red con-
tours show the lensing constraint when restricted to a reduced-
dimensionality space with ✓MC fixed to the value accurately mea-
sured by the CMB power spectra; the intersection of the red and
black contours gives a clearer visual indication of the consis-
tency region in the ⌦m–�8 plane.

The lensing-only constraint defines a band in the ⌦m–�8
plane, with the well-constrained direction corresponding ap-
proximately to the constraint

�8⌦
0.25
m = 0.591 ± 0.021 (lensing only; 68 %). (13)

This parameter combination is measured with approximately
3.5% precision.

The dependence of the lensing potential power spectrum on
the parameters of the ⇤CDM model is discussed in detail in

† For example, we split the neutrino component into approximately
two massless neutrinos and one with

P
m⌫ = 0.06 eV, by default.

Appendix E; see also Pan et al. (2014). Here, we aim to use
simple physical arguments to understand the parameter degen-
eracies of the lensing-only constraints. In the flat ⇤CDM model,
the bulk of the lensing signal comes from high redshift (z > 0.5)
where the Universe is mostly matter-dominated (so potentials are
nearly constant), and from lenses that are still nearly linear. For
fixed CMB (monopole) temperature, baryon density, and ns, in
the ⇤CDM model the broad shape of the matter power spectrum
is determined mostly by one parameter, keq ⌘ aeqHeq / ⌦mh2.
The matter power spectrum also scales with the primordial am-
plitude As; keeping As fixed, but increasing keq, means that the
entire spectrum shifts sideways so that lenses of the same typ-
ical potential depth  lens become smaller. Theoretical ⇤CDM
models that keep `eq ⌘ keq �⇤ fixed will therefore have the same
number (proportional to keq �⇤) of lenses of each depth along
the line of sight, and distant lenses of the same depth will also
maintain the same angular correlation on the sky, so that the
shape of the spectrum remains roughly constant. There is there-
fore a shape and amplitude degeneracy where `eq ⇡ constant,
As ⇡ constant, up to corrections from sub-dominant changes in
the detailed lensing geometry, changes from late-time potential
decay once dark energy becomes important, and nonlinear ef-
fects. In terms of standard ⇤CDM parameters around the best-fit
model, `eq / ⌦0.6

m h, with the power-law dependence on ⌦m only
varying slowly with ⌦m; the constraint `eq / ⌦0.6

m h = constant
defines the main dependence of H0 on ⌦m seen in Fig. 7.

The argument above for the parameter dependence of the
lensing power spectrum ignores the e↵ect of baryon suppres-
sion on the small-scale amplitude of the matter power spectrum
(e.g., Eisenstein & Hu 1998). As discussed in Appendix E, this

8

Figure 3.4: The lens map from Planck and the inferred lensing power spectrum
are shown. Figs. from [31].

on the sphere; εij is the totally anti-symmetric tensor in two dimensions; εij =
±det γ if (i, j) = (1, 2) and (i, j) = (2, 1) respectively and εij = 0 if two indices
are equal. Here γ is the standard metric of the two-sphere.

3.3 CMB lensing

So far, we have only used linear perturbation theory. But there is one second
order term which cannot be neglected in a precise CMB calculation and it is
also included in the above codes. This is lensing of CMB photons be foreground
perturbations of the geometry. We shall again only consider scalar perturba-
tions.

Due to the foreground gravitational potential the CMB temperature anisotropies
and polarisation are lensed. The temperature which we see in direction n ac-
tually has been emitted into direction n + δn and then deflected by an angle
−δn.

Tobs(n) = T (n + δn), δn = ∇φ, (3.76)

φ(n) = −
∫ r∗

0

dr
(r∗ − r)
r∗r

(Φ + Ψ)(rn, τ0 − r) . (3.77)

The function φ(n, z∗) is called the lensing potential to the CMB. Its reconstruc-
tion from CMB observation is shown in Fig. 3.4 . A derivation of Eqs. (3.76)
and (3.77) and be found e.g. in [9]. Lensing of the CMB is a second order effect.
If the temperature fluctuations vanish lensing has no effect and if the lensing
potential vanishes, the temperature fluctuations are not lensed. Lensing of E
polarisation induces B polarisation also from scalar perturbations. These have
been observed in several CMB experiments see Fig 3.5.

The fact that the observed B-polarisation spectrum is compatible with lens-
ing of scalar perturbations without any need for a primordial tensor mode yields
a limit of about r < 0.065 (at 95% confidence at the scale k = 0.002Mpc−1) for
the tensor to scalar ratio, see Fig 3.6.

Lensing of the CMB is very important as it breaks degeneracies for parameter
estimation and it provides an integrated measure of the matter distribution. The
planned S4 CMB experiments like the Simons array will determine the lensing
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Fig. 13.— Distribution of the �2 for the null tests described in
Section 3.7. The smooth line represents the expected distribution
if the null tests were uncorrelated. The dashed black histogram
shows our null test distribution after rescaling the errors by 3%.
We interpret this as an estimate of the uncertainty on our errors.

The �2 distribution for this set of null tests is shown in
Figure 13. The distribution is close to expectation, but
we find that the measured and predicted �2 distribution
fit best if we reduce the error bars by ⇡ 3%. We interpret
this as an estimate of the uncertainty on our errors.

3.8. E↵ect of aberration

The observed power spectra are a↵ected by aberration
due to our proper motion with respect to the CMB last
scattering surface. We move at a speed of 369 km/s along
the direction d = (l, b) = (264�, 48�) (e.g. Planck Collab-
oration et al. (2014b)). This motion induces a kinematic
dipole of the form cos ✓ = (d · n), where n is the vector
position of each pixel. Aberration results in an angle-
dependent rescaling of the multipole moments ` and its
e↵ect on the power spectrum can be approximated as

�C`
C`

= �d ln C`
d ln `

�hcos ✓i (2)

(Jeong et al. 2014), where � = v/c and hcos ✓i = �0.82
in D56, �0.97 in D5 and �0.65 in D6, where the aver-
age is taken over the solid angle of each ACTPol patch.
We generate a set of 120 aberrated simulations, compute
their power spectra and compare it to the power spec-
tra of non-aberrated maps. The result is presented in
Figure 14 together with the analytical estimate. We use
this set of simulations to correct our power spectra for
the aberration e↵ect, such that Ĉ` = C`��C`. In earlier
releases the e↵ect was negligible and we did not correct
for it. Section 5.2 discusses the impact of this correction
on cosmological parameters.

3.9. Unblinded BB spectra

We unblind the B mode power spectrum at the end of
the analysis. The spectrum is shown in Figure 15 along
with B mode measurements from The Polarbear Collab-
oration: P. A. R. Ade et al. (2014), SPTpol (Keisler et al.
2015) and BICEP2/Keck array (BICEP2 Collaboration
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Fig. 14.— E↵ect of aberration on the TT and EE CMB power
spectra due to our proper motion with respect to the CMB. Our
aberrated simulations agree with the analytical estimate of the
expected e↵ect.
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Fig. 15.— Unblinded ACTPol BB power spectra compared to
measurements from POLARBEAR (The Polarbear Collaboration:
P. A. R. Ade et al. 2014), SPTpol (Keisler et al. 2015) and BI-
CEP2/Keck array (BICEP2 Collaboration et al. 2016). The solid
line is the Planck best fit ⇤CDM model. The ACTPol data are
consistent with expectation and deviate from zero at 2�.

et al. 2016). We fit for an amplitude in the multipole
range 500 < ` < 2500, where Galactic and extragalac-
tic contamination is minimal, using the lensed B mode
⇤CDM prediction. We find A = 2.03±1.01. This ampli-
tude is consistent with expectation, but the significance
of the fit is not high enough to be interpreted as a detec-
tion.

4. LIKELIHOOD

We first construct a likelihood function to describe the
CMB and foreground emission present in the 149 GHz
power spectrum. To improve the estimation of the CMB
part, we then add intensity power spectra estimated at
both 150 and 220 GHz by the previous ACT receiver,
MBAC.

Using these multi-frequency data we estimate the
foreground-marginalized CMB power spectrum in TT,
TE, EE for ACT, for both the MBAC and ACTPol

13
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FIG. 10. Likelihoods for r and Ad, using BICEP2/Keck
and Planck, as plotted in Fig. 6, overplotted on constraints
obtained from realizations of a lensed-⇤CDM+noise+dust
model with dust power similar to that favored by the real
data (Ad = 3.6 µK2). Half of the r curves peak at zero as
expected.
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FIG. 11. Constraints obtained when adding dust realizations
from the Planck Sky Model version 1.7.8 to the base lensed-
⇤CDM+noise simulations. (Curves for 139 regions with peak
Ad < 20 µK2 are plotted). We see that the results for r
are unbiased in the presence of dust realizations which do
not necessarily follow the `�0.42 power law or have Gaussian
fluctuations about it.

as the level of Ad increases, and we should therefore not
be surprised if the fraction of realizations peaking at a
value higher than the real data is increased compared to
the simulations with mean Ad = 3.6 µK2. However we
still expect that on average 50% will peak above zero and
approximately 8% will have an L0/Lpeak ratio less than
the 0.38 observed in the real data. In fact we find 57%
and 7%, respectively, consistent with the expected val-
ues. There is one realization which has a nominal (false)
detection of non-zero r of 3.3�, although this turns out to
also have one of the lowest L0/Lpeak ratios in the Gaus-
sian simulations shown in Fig. 10 (with which it shares
the CMB and noise components), so this is apparently
just a relatively unlikely fluctuation.
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FIG. 12. Upper: BB spectrum of the BICEP2/Keck maps
before and after subtraction of the dust contribution, esti-
mated from the cross-spectrum with Planck 353 GHz. The
error bars are the standard deviations of simulations, which,
in the latter case, have been scaled and combined in the same
way. The inner error bars are from lensed-⇤CDM+noise sim-
ulations as in the previous plots, while the outer error bars
are from the lensed-⇤CDM+noise+dust simulations. Lower:
constraint on r derived from the cleaned spectrum compared
to the fiducial analysis shown in Fig. 6.

B. Subtraction of scaled spectra

As previously mentioned, the modified blackbody
model predicts that dust emission is 4% as bright in the
BICEP2 band as it is in the Planck 353 GHz band. There-
fore, taking the auto- and cross-spectra of the combined
BICEP2/Keck maps and the Planck 353 GHz maps, as
shown in the bottom row of Fig. 2, and evaluating
(BK⇥BK�↵BK⇥P)/(1�↵), at ↵ = ↵fid cleans out the
dust contribution (where ↵fid = 0.04). The upper panel
of Fig. 12 shows the result.

As an alternative to the full likelihood analysis pre-
sented in Sec. III B, we can instead work with the dif-
ferenced spectra from above, a method we denote the
“cleaning” approach. If ↵fid were the true value, the ex-

Figure 3.5: The observed B-polarization power spectrum, figures from [32] (left)
and [33] (right). The data and the B polarisation spectrum from lensing of scalar
perturbations for the Planck best fit model are shown.

Figure 3.6: The limits on r at the scale k = 0.002Mpc−1 from the Planck data,
figure from [34].
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potential with high accuracy. This is their primary goal besides measuring or
limiting r down to rmin ∼ 10−3, see [35].

3.4 Cosmological parameters from CMB obser-
vations

The CMB power spectrum and polarisation from scalar perturbations can for-
mally be written in the form

C` =

∫
dk∆2

`(k)PΨ(k, tin) (3.78)

Here ∆2
`(k) only depends on cosmological parameters. Assuming a simple ini-

tial power spectrum like k3PΨ(k, tin) = As(kt0)ns−1, one can therefore use the
measured C` spectrum to estimate cosmological parameters jointly with As and
ns.

The fixed parameter of the Planck base model assume

• No curvature, K = 0

• No tensor perturbations, r = 0

• Three species of thermal neutrinos, Neff = 3.046 with temperature Tν =

(4/11)
1/3

T0

• 2 neutrino species are massless and the third has m3 = 0.06eV such that∑
imi = 0.06eV.

• Helium fraction YHe = 4nHe/nb is calculated from Neff and ωb.

The following parameters are estimated from the data via am Markov Chain
Monte Carlo procedure (MCMC), see [9] for an explanation how this works in
principle. The results given below are from [34].

• Amplitude of curvature perturbations, As

• Scalar spectral index, ns

• Baryon density ωb = Ωbh
2

• Cold dark matter density ωc = Ωch
2

• Present value of Hubble parameter H0 = 100hkm/sec/Mpc (ΩΛ = 1 −
Ωm = 1− (ωb + ωc)/h

2).

• optical depth to reionization τreion.

ns = 0.9652± 0.0042
Ωch

2 = 0.1198± 0.0012
Ωbh

2 = 0.02233± 0.00015
ln(1010As) = 3.043± 0.014
h = 0.6737± 0.0054
τreion = 0.054± 0.0074
(ΩΛ = 0.687± 0.0087)

(3.79)
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Figure 3.7: The cosmological parameters as obtained from the Planck data
within the Planck base model defined above. The mans values with 65% errors
are given in the list (3.79). Figure from [34].

3.5 Conclusions

redo this !

In this course you have seen how observations of CMB anisotropies and polari-
sation can be used to determine cosmological parameters as well as the param-
eters of the initial power spectrum which was generated in the early Universe,
probably during a phase of inflation. As an example, from the CMB alone the
presence of dark energy is inferred at more than 70σ. The CMB (more than 5000
data points) is compatible with a simple standard model of only 6 independent
parameters, ΛCDM.

Nevertheless, the determination of these parameters with CMB observations
is model dependent. Allowing for extensions of the standard mode, like e.g.
curvature, tensor modes, a more complicated initial power spectrum, will lead
to larger error bars on the parameters or may even move them outside the
confidence interval of the standard model. For this reason we always talk of
’parameter estimation’ and never of ’parameter measurement’. For this reasons
it is also very important to confirm the standard model with other, independent
observations, for example via large scale structure which is tested in galaxy
number counts, weak lensing of H1 intensity mapping.

Already, some tension of cosmological parameters found by other means
than the CMB have emerged: Direct measurements of the Hubble constant via
Supernovae of type 1a used as ’modified standard candles yield [1]

H0 = 73.04± 1.04km/sec/Mpc

which is nearly 5σ higher than the value obtained by the Planck collaboration.
Another tension come from the clustering amplitude measured by weak lensing.
It is typically somewhat lower than the one inferred by Planck. More precisely,
weak lensing survey are most sensitive to the combination

S8 ≡ σ8

√
Ωm/0.3 . (3.80)



Here σ8 is the matter fluctuation at z = 0 in a ball of radius 8h−1Mpc,

σ2
8 =

3

2π2

∫
j1(kR)

kR
Pm(k)dk R = 8h−1Mpc . (3.81)

Planck results [34] infer S8 = 0.811 ± 0.011 while e.g. the KiDS weak lensing
survey [36] reports S8 = 0.766+0.020

−0.014 which is in tension by about 2σ. The
tension with older weak lensing results is somewhat larger.

It is not clear whether non-linearities or, especially baryonic effects which
may not be correctly taken into account in weak lensing surveys are the cause
of this tension. Also in what concerns the Hubble tension it is still possible that
some unaccounted for systematic error in the supernova data or in the CMB
might be the origin of the discrepancy. The most exciting prospect, however,
is of course that these (or any other) tensions might be due to new physics,
deviations from the simple ΛCDM model. So far no convincing alternatives
have been proposed in the vaste literature on the subject2.

To resolve the issue new observations which are as independent as possible
from the present measurements are needed on the one side and new theoretical
ideas concerning possible systematics in the data or alternative cosmological
models are needed.

2Searching for ’H0 tension’ in the title I have found 275 papers (on September 19, 2023)
on inspire which have collected 12’396 citations!
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Appendix

In this appendix a present a brief reminder of General relativity, which is mainly
useful to fix the notation but can of course not replace a course on the subject.

A.1 Notation

We consider a four-dimensional pseudo-Riemannian spacetime given by a man-
ifold M and a metric g with signature (−,+,+,+). For a given choice of coor-
dinates (xµ)3

µ=0 the metric is given by the ten components of a 4× 4 symmetric
tensor,

g = ds2 = gµνdx
µdxν . (A.1)

Contravariant and covariant tensor fields on a pseudo-Riemannian manifold are
equivalent. Their indices can be lowered and raised with the metric, e.g.

gβνT
αν = Tαβ = gαµTµβ . (A.2)

Here gαµ is the inverse of the metric such that gαµgµβ = δαβ , and we adopt
Einstein’s summation convention: indices which appear as subscripts and su-
perscripts are summed over.

The Christoffel symbols are defined by

Γµαβ =
1

2
gµν [∂αgνβ + ∂βgνα − ∂νgαβ ] . (A.3)

Here ∂µ indicates a partial derivative w.r.t. the coordinate xµ, this is sometimes
also simply denoted by a comma ∂µf ≡ f,µ. Covariant derivatives are indicated
by a semi-colon ‘;’ or by the symbol ∇.

A geodesic γ(t) with X = γ̇ is a solution to the differential equation

∇XX = 0 , Xµ∂µX
ν + ΓναβX

αXβ = 0 , (A.4)

where the second equation expresses the first equation in components. The
vector field X = γ̇ is given by X = Xµ∂µ. We often conveniently identify a
vector field with the partial derivative in its direction. A tensor field T of rank
(p, q) is parallel transported along the vector field X if

∇XT = 0 , XµT
αi1 ···αip
βj1 ···βjq ;µ

= 0 . (A.5)
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Covariant derivatives of a tensor field are given by

T
αi1 ···αip
βj1 ···βjq ;µ

= T
αi1 ···αip
βj1 ···βjq

,µ +Γ
αi1
µσ T

σ···αip
βj1 ···βjq

+ · · · − Γσµβj1T
αi1 ···αip
σ···βjq − · · · . (A.6)

The Riemann curvature tensor is defined by

Rαβµν = Γανβ ,µ−Γαµβ ,ν +ΓρβνΓαµρ − ΓρβµΓανρ . (A.7)

The tensor Rαβµν = gασR
σ
βµν is anti-symmetric in the first (αβ) and second

(µν) pair of indices and symmetric in the exchange of the pairs, (αβ) ↔ (µν).
The Bianchi identities read

Σ(βµν)R
α
βµν = 0 1st Bianchi identity (A.8)

Σ(µνσ)R
α
βµν;σ = 0 2nd Bianchi identity . (A.9)

Here Σ(βµν) denotes the sum over all cyclic permutations of these three indices.
The Ricci tensor and the Riemann scalar are given by

Rµν = Rαµαν , R = Rµµ = Rµνg
µν . (A.10)

With these sign conventions, the curvature of the sphere is positive, and chang-
ing the order of covariant derivatives of a vector field X yields

∇µ∇νXα −∇ν∇µXα = RασµνX
σ . (A.11)

The Einstein tensor is defined as

Gµν = Rµν −
1

2
gµνR . (A.12)

The second Bianchi identity and the symmetries of the Riemann tensor imply
Gνµ;ν = 0.

The field equations of general relativity relate the curvature to the energy–
momentum tensor Tµν via Einstein’s equation,

Gµν = 8πGTµν , (A.13)

where G denotes Newton’s constant, G = m−2
P . The second Bianchi identity

ensures that Tµν is covariantly conserved, T νµ;ν = 0. Equation (A.13) can also
be derived from an action principle with

S = Sgrav + Smat .

Here Smat is the usual matter action and

Sgrav =
m2
P

16π

∫
d4x
√−gR (A.14)

is the Hilbert action. A somewhat tedious but standard calculation gives (see
e.g. [37])

δSgrav = −m
2
P

16π

∫
d4x
√−gGµνδgµν . (A.15)

73



The Einstein equation implies then that the energy–momentum tensor can be
obtained by varying the matter action w.r.t. the metric,

Tµν =
1

2

δSmat

δgµν
.

By construction, this energy–momentum tensor is always symmetric, but it
does, in general, not agree with the canonical energy–momentum tensor. Of
course the conserved quantities (if any!) are the same for both definitions.

The Weyl tensor specifies the degrees of freedom of the Riemann tensor
which are not determined by the Ricci tensor (or Einstein tensor). It is the
traceless part of Rαβµν . In n dimensions, n ≥ 3, it is given by

Cαβµν = Rαβµν −
2

n− 2

(
gα[µRν]β + gβ[µRν]α

)
− 2

(n− 1)(n− 2)
Rgα[µgν]β . (A.16)

Here [µν] denotes anti-symmetrization in the indices µ and ν. The Weyl tensor
has the same symmetries like the Riemann tensor but all its traces vanish. It
describes the degrees of freedom of the curvature (gravitational field) in source-
free spacetime, hence it describes gravity waves.

An introduction to general relativity can be found e.g. in [38] or [37].

A.2 The Lie derivative

For a vector fieldX with flux φXt the Lie derivative of a tensor field T of arbitrary
rank is defined by

LXT = lim
ε→0

1

ε

((
φXε
)∗
T − T

)
. (A.17)

Here
(
φXε
)∗

denotes the pullback of the map φXt :M→M : p 7→ γp(t), where
γp is the integral curve to X with starting point p. The existence and uniqueness
of solutions to ordinary differential equations tells us that for sufficiently small
t, φXt is a local diffeomorphism. If T (t) denotes the value of the tensor field T
at the position γp(t) we also have

LXT (p) =
d

dt

∣∣∣∣
t=0

T (t) . (A.18)

Hence the Lie derivative in direction X vanishes if the tensor field T is conserved
along integral curves of X. Furthermore, for small t we have(

φXt
)∗
T = T + tLXT +O(t2) (A.19)

In coordinates the Lie derivative becomes (see e.g. [37])

LXT
αi1 ···αip
βj1 ···βjq

= XµT
αi1 ···αip
βj1 ···βjq

,µ −Xαi1 ,σ T
σ···αip
βj1 ···βjq

− · · ·

+Xσ,βj1 T
αi1 ···αip
σ···βjq + · · · . (A.20)
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A.3 Friedmann metric and curvature

The Friedmann metric is given by

ds2 = gµνdx
µdxν = −dτ2 + a2(τ)γijdx

idxj = a2(τ)[−dt2 + γijdx
idxj ] (A.21)

The Christoffel symbols with respect to cosmic or conformal time are

cosmic time τ conformal time t

Γ0
00 = 0

ȧ

a
(A.22)

Γi00 = 0 0 (A.23)

Γ0
i0 = 0 0 (A.24)

Γij0 = a′

a δ
i
j = Hδij

ȧ

a
δij = Hδij (A.25)

Γ0
ij = a′aγij

ȧ

a
γij (A.26)

Γkij = (3)Γkij = 1
2γ

km (γim,j + γjm,i − γij,m) (3)Γkij , (A.27)

where (3)Γkij denotes the three-dimensional Christoffel symbols of the metric γ
which depend on the coordinate system chosen on the spatial slices. The over-
dot indicates a derivative w.r.t. conformal time t while the prime indicates a
derivative w.r.t. cosmic time τ .

The non-vanishing components of the Riemann and Ricci curvature tensors
in cosmic time τ are then given by

R0
i0j = a′′aγij , (A.28)

Ri00j =
a′′

a
δij , (A.29)

Rijkm = (3)Rijkm + (a′)2
(
δikγjm − δimγjk

)
, (A.30)

R00 = −3
a′′

a
, (A.31)

Rij =
[
a′′a+ 2

(
a′

2
+K

)]
γij , (A.32)

R = 6[
a′′

a
+H2 +

K

a2
] , (A.33)

while in conformal time t we have

R0
i0j =

(
ȧ

a

)·
γij = Ḣγij , (A.34)

Ri00j =

(
ȧ

a

)·
δij = Ḣδij , (A.35)

Rijkm = (3)Rijkm +H2
(
δikγjm − δimγjk

)
, (A.36)

R00 = −3

(
ȧ

a

)·
= Ḣ , (A.37)

Rij =
[
Ḣ+ 2

(
H2 +K

)]
γij , (A.38)

R =
6

a2

[
Ḣ+H2 +K

]
. (A.39)
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The curvature on the three-dimensional slices of constant time is given by

(3)Rijkm = K
(
δikγjm − δimγjk

)
, (A.40)

(3)Rij = 2Kγij and (A.41)
(3)R = 6K . (A.42)

A.4 Scalar perturbations

Here we collect the Christoffel symbols and the curvature tensor for scalar per-
turbations in longitudinal gauge in Fourier space,

ds2 = a2
(
−(1 + 2Ψ) dt2 + (1− 2Φ)δij dx

i dxj
)
. (A.43)

A.4.1 The Christoffel symbols

δΓ0
00 = Ψ̇ , δΓ0

0j = ikjΨ , (A.44)

δΓj00 = ikjΨ , δΓji0 = −Φ̇δji , (A.45)

δΓ0
ij =

[
−2H(Ψ + Φ)− Φ̇

]
δij , (A.46)

δΓjim = −iΦ
[
δji km + δjmki − δimkj

]
. (A.47)

A.4.2 The Riemann tensor

δR0
00j = δR0

0ij = 0, (A.48)

δR0
i0j = −

[
2Ḣ(Ψ + Φ) +H(Ψ̇ + Φ̇) + Φ̈− k2

3
Ψ

]
δij

Ψkikj , (A.49)

δR0
ijm = −

[
HΨ + Φ̇

]
(δijkm − δimkj) , (A.50)

δRi00j =

[
k2

3
Ψ−H(Ψ̇ + Φ̇)− Φ̈

]
δij + Ψkikj , (A.51)

δRi0jm = i
[
Φ̇ +HΨ

] (
δijkm − δimkj

)
, (A.52)

δRij0m = −i
[
HΨ + Φ̇

] (
δimkj − δjmki

)
, (A.53)

δRijmn = −2

[
H2(Ψ + Φ) +HΦ̇ +

1

3
k2Φ

] (
δimδjn − δinδjm

)
Φ
(
δinkjkm − δimkjkn + kiknδjm − kikmδjn

)
. (A.54)
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A.4.3 The Ricci and Einstein tensors

The perturbation if the Ricci tensor is

δR00 = 3H(Ψ̇ + Φ̇)− k2Ψ + 3Φ̈ , (A.55)

δR0j = 2i
[
HΨ + Φ̇

]
kj , (A.56)

δRij =

[
−2(Ḣ+ 2H2)(Ψ + Φ)−HΨ̇ +

k2

3
Ψ− Φ̈− 5HΦ̇

− 4

3
k2Φ

]
δij − (Φ−Ψ)kikj . (A.57)

The perturbation of the Riemann scalar then becomes

δR = − 2

a2

[
6(Ḣ+H2)Ψ + 3HΨ̇− k2Ψ + 9HΦ̇ + 3Φ̈ + 2(k2 − 3K)Φ

]
.

(A.58)
For the Einstein tensor we find

δG0
0 =

2

a2

[
3H2Ψ + 3HΦ̇ + (k2 − 3K)Φ

]
, (A.59)

δG0
j = −i 2

a2

[
HΨ + Φ̇

]
kj , (A.60)

δGj0 = i
2

a2

[
HΨ + Φ̇

]
kj , (A.61)

δGij =
2

a2

[
(2Ḣ+H2)Ψ +HΨ̇− k2

3
Ψ + Φ̈ + 2HΦ̇ +

k2

3
Φ

]
δij

− 1

a2
(Φ−Ψ)kikj . (A.62)

A.4.4 The Weyl tensor

The Weyl tensor from scalar perturbations only has an ‘electric’ component, i.e.
all the components are determined by

C0
i0j ≡ −Eij = −1

2
(Φ + Ψ)kikj . (A.63)

More precisely we have

C0i0j = a2Eij , (A.64)

C0ijk = 0 , (A.65)

Cijk` = gikEj` + gj`Eik − gjkEi` − gi`Ejk . (A.66)
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